首页> 外文会议>Annual Device Research Conference >Machine learning for variability aware statistical device design: The case of perpendicular spin-transfer-torque random access memory
【24h】

Machine learning for variability aware statistical device design: The case of perpendicular spin-transfer-torque random access memory

机译:可变性的机器学习感知统计设备设计:垂直自旋转移扭矩随机存取存储器的情况

获取原文

摘要

Spin-transfer-torque random access memory (STT RAM) is a promising memory technology due to its scalability, endurance and non-volatility. Addressing the process induced variations during realistic device fabrication process is a challenge, while trying to meet performance specifications, more so with the technology scaling leading to smaller device dimensions. In a simplified picture, the performance parameters of an STT RAM cell such as switching current density for a given pulse length or the switching delay for a given applied current density, depend on a variety of material parameters such as magnetic anisotropy and damping constant of the “free layer” (FL), the information storage layer. Besides material parameters, device dimensions, such as the diameter and the thickness of FL also vary about the target values, due to imperfections during thin-film deposition, lithography and ion-beam etching, among other process steps. To consider process variations in such parameters, Monte-Carlo simulations can be used, where each of the parameters can be, e.g., a random number from a Gaussian distribution about its target value. However, a modest number of 5 parameters and 100 values for each of them would require (10) = 10 device simulations, and would be computationally infeasible for e.g., micromagnetic simulation. A possible route to circumvent such a prohibitively large computational load would be to use a compact model [1, 2]. However, a method like this relies on the so-called macrospin approximation and assumes spins across FL to be parallel to each other at all times during switching and might not be a true representation. Also, for many emerging devices, a compact model still is not available. Machine learning (ML) has been used in the past to model array of resistive random access memory (RRAM) [3]. In this work, we propose an ML driven simulation methodology to take the effect of process variation into account using micromagnetic simulations with reasonable computational effort. We employ support vector regression (SVR), a method used in supervised learning to anticipate the behavior of a system based on previously obtained “training data”, to predict performance of an STT RAM cell. We use STT RAM as a model system, although the proposed scheme should be usable for other devices too.
机译:由于其可扩展性,耐久性和非波动性,旋转转移扭矩随机存取存储器(STT RAM)是一个有前途的内存技术。解决现实设备制造过程中的过程诱导变化是一项挑战,同时尝试满足性能规范,更多的技术缩放导致较小的设备尺寸。在简化的图像中,STT RAM电池的性能参数,例如用于给定脉冲长度的开关电流密度或用于给定施加的电流密度的开关延迟,取决于各种材料参数,例如磁各向异性和阻尼常数“自由层”(FL),信息存储层。除了材料参数之外,由于薄膜沉积,光刻和离子束蚀刻在其他工艺步骤中,装置尺寸,例如直径和F1的厚度也会变化围绕目标值。为了考虑这种参数的处理变化,可以使用Monte-Carlo仿真,其中每个参数可以是例如从高斯分布到其目标值的随机数。然而,它们中的每一个的适度数量为5个参数和100个值需要(10)= 10个设备仿真,并且对于例如微磁性仿真,计算地是可逆的。避免这种预约计算负载的可能路线是使用紧凑型[1,2]。然而,这样的方法依赖于所谓的MacroSpin近似,并且在切换期间始终彼此平行彼此的旋转并不是真正的表示。此外,对于许多新兴设备,紧凑型模型仍然不可用。过去使用机器学习(ML)以模拟电阻随机存取存储器(RRAM)[3]的模型阵列。在这项工作中,我们提出了一种推动仿真方法,从具有合理计算工作的微观模拟来考虑过程变化的效果。我们采用支持向量回归(SVR),一种用于监督学习的方法,用于基于先前获得的“训练数据”来预测系统的行为,以预测STT RAM单元的性能。我们使用STT RAM作为模型系统,尽管建议的方案也适用于其他设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号