首页> 外文会议>Annual Device Research Conference >2D-EFET — A novel beyond Boltzmann transistor
【24h】

2D-EFET — A novel beyond Boltzmann transistor

机译:2D-EFET —超越玻耳兹曼晶体管的新颖技术

获取原文

摘要

The unprecedented technological success of the electronics industry over the last five decades have been driven by Silicon (Si) technology at the center of which resides the metal oxide semiconductor field effect transistor (MOSFET). Relentless scaling of MOSFET dimensions ensured faster and cheaper computing since more and more transistor could be packed into the same chip area. At the same time scaling of supply voltage (VDD) kept the power density practically constant. This golden era of MOSFET scaling often referred to as the Dennard Scaling era had continued for almost three decades. However, around 2005, the voltage scaling ended owing to the fact that further reduction in supply voltage (VDD) resulted in exponential increase in the OFF state current (IOFF) and hence the static power dissipation of the MOSFET. This was a direct consequence of non-scalability of the subthreshold slope (SS) to below 60mV/decade. Note, subthreshold slope is defined as the amount of gate voltage required to change the source to drain current of a MOSFET by one order of magnitude. The non-scalability of SS is the outcome of Boltzmann statistics, the governing physical principle for top of the barrier devices like MOSFETs. Although voltage scaling stopped, length scaling still continued for another decade albeit with new challenges like increasing power density, short channel effects and increasing parasitic. Unfortunately, even for the most advanced FinFET technology length scaling seems extremely challenging. Therefore, it is imminent that both aspects of MOSFET scaling will end very shortly. In order to sustain the growth of the semiconductor industry, it is necessary that novel low power beyond Boltzmann device concepts based on aggressively scalable materials be conceived immediately.
机译:在过去的五十年中,电子行业前所未有的技术成功是由硅(Si)技术推动的,其核心是金属氧化物半导体场效应晶体管(MOSFET)。 MOSFET尺寸的无休止缩放可确保更快,更便宜的计算,因为越来越多的晶体管可以封装在同一芯片区域中。同时,电源电压(VDD)的缩放比例使功率密度实际上保持恒定。 MOSFET缩放的黄金时代通常被称为Dennard Scaling时代,已经持续了近三十年。然而,在2005年左右,由于电源电压(VDD)的进一步降低导致截止状态电流(IOFF)呈指数级增长,从而导致MOSFET的静态功耗下降,电压缩放终止。这是亚阈值斜率(SS)不可缩放至60mV /十倍以下的直接结果。注意,亚阈值斜率定义为将MOSFET的源极到漏极电流改变一个数量级所需的栅极电压量。 SS的不可扩展性是Boltzmann统计量的结果,Boltzmann统计量是诸如MOSFET之类的势垒器件顶部的支配物理原理。尽管电压缩放已停止,但长度缩放仍持续了十年,尽管出现了新的挑战,例如功率密度增加,短沟道效应和寄生效应增加。不幸的是,即使对于最先进的FinFET技术,长度缩放似乎也极具挑战。因此,MOSFET缩放的两个方面都将很快结束。为了维持半导体工业的增长,有必要立即构想出超越波尔兹曼器件概念的新型低功耗技术,该技术基于可扩展的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号