【24h】

THE SNAP-THROUGH OF FOUR-FOLD ORIGAMI CONES

机译:四折折纸锥的通孔

获取原文

摘要

Some insects, such as beetles, are able to store their wings under their elytra by folding them and can rapidly deploy their wings for flight. The crease patterns of these wings allow the fold/unfold kinematics to take place using simple manipulation, and to remain stable in both configurations. It has been observed that the structures of the beetle wings are kinetically multi-stable origami. The crease pattern of these wings is comprised of a peculiar arrangement of four-fold vertices. In this manuscript, we show preliminary work towards studying the non-flat (conical) four-fold vertices observed in the wing structure using experiments and rigid origami analysis. We construct four-fold origami paper cones of varying angles and study their snap-through behavior under varying point-load configurations. From these experiments, the threshold forces, displacements and duration timescale of snap-through buckling are extracted. Similarly, we study the snap-through instability of two-dimensional (2D) arches having a vertex, which provide insights into the wing folds and are hypothesized to represent properties which facilitate the deployability of the wing. Using the pseudo-rigid body model (PRBM) [1], we numerically analyze the kinematics and potential energy of the snap-though buckling of 2D arches, and show that the model captures the kinematic behavior sufficiently well to provide insights of energetic behavior from kinematic experimental results. Overall, our approach shows promise in studying the design and kinetics of the insect wing origami, and could enable the design of bio-inspired deployable engineering structures.
机译:一些昆虫,例如甲虫,可以通过折叠将翅膀储存在鞘翅中,并且可以迅速展开翅膀进行飞行。这些机翼的折痕样式允许使用简单的操作即可进行折叠/展开运动,并在两种配置下均保持稳定。已经观察到,甲虫翅膀的结构是动力学上多稳定的折纸。这些翼的折痕图案由四折顶点的特殊排列组成。在这份手稿中,我们展示了通过实验和刚性折纸分析研究在机翼结构中观察到的非平坦(圆锥形)四折顶点的初步工作。我们构造了四个折角不同的折纸纸盆,并研究了它们在不同点荷载配置下的快速通过行为。从这些实验中,提取了扣紧屈曲的阈值力,位移和持续时间尺度。同样,我们研究了具有顶点的二维(2D)拱的快速不稳定性,该拱提供了对机翼褶皱的洞察力,并被假定为代表有助于机翼展开性的特性。使用伪刚体模型(PRBM)[1],我们对2D拱门的曲折通过屈曲的运动学和势能进行了数值分析,并表明该模型能够很好地捕捉运动学行为,从而从中提供能量行为的见解。运动学实验结果。总体而言,我们的方法在研究昆虫翅膀折纸的设计和动力学方面显示出了希望,并且可能使设计具有生物启发性的可展开工程结构成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号