首页> 外文会议>International symposium on shock waves 1 >Dispelling Misconceptions about Bast Waves (Irvine Israel Glass Lecture)
【24h】

Dispelling Misconceptions about Bast Waves (Irvine Israel Glass Lecture)

机译:消除对韧波的误解(Irvine Israel Glass讲座)

获取原文

摘要

In all the above examples, the shock wave was reflected, and the "responding" material effect on the blast wave was insignificantly different from that of a non-responding material. In all cases the shock wave reflected as if the structure was non-responding. This justifies and simplifies calculations of shock interactions with structures with the assumption that the structures are rigid and non-responding. The debris velocity of the structures reached a maximum of less than half of the material velocity behind the shock. The debris remains well behind the shock front because the shock velocity is greater than the material velocity at the shock front by the speed of sound. As the velocity of the air behind the shock slows and reverses, the debris falls to the ground or reverses direction and may fall closer to the detonation point than its original location. With the possible exception of a few buildings that may be in or very near the fireball, urban structures absorb little energy from the blast wave. The debris is almost always at least 1000 times denser than the air in the blast wave. The air responds 1000 times faster than the solid material. The kinetic energy of the debris is therefore much less than 1 % of the air blast energy. The debris from these structures generally falls within about four times the building height. Many years ago Hal Brode advised me to "not do hydro in your head." The above are several examples of why this is good advice for everyone. Most of the misconceptions about air blast waves and their interactions with structures are caused by a lack of understanding of the differences between overpressure and dynamic pressure. Further we must keep in mind that most solid materials, whether wood or steel, are at least 1000 times more dense than air and will therefore move one thousandth as fast as the air blast that loads them.
机译:在上述所有示例中,都反射了冲击波,并且对冲击波的“响应”材料效果与非响应材料的效果无明显差异。在所有情况下,冲击波都好像结构没有响应一样反射。假设结构是刚性且无响应的,这证明并简化了与结构的冲击相互作用的计算。结构的碎屑速度达到的最大值小于冲击后材料速度的一半。碎片保持在冲击前沿的后面,因为冲击速度大于冲击前沿的材料速度(按声速)。随着冲击后空气的速度减慢和反向,碎屑会掉落到地面或反向,并可能比其原始位置更靠近爆炸点。除了可能位于火球之中或附近的少数建筑物外,城市建筑几乎不会吸收爆炸波的能量。碎片几乎总是比爆炸波中的空气密度至少高1000倍。空气的响应速度比固体材料快1000倍。因此,碎片的动能远小于鼓风能的1%。来自这些结构的碎屑通常落在建筑物高度的大约四倍之内。多年前,哈尔·布罗德(Hal Brode)劝我“不要在脑海里做水力运动”。以上是为什么这对每个人都是好的建议的几个示例。大多数关于气吹波及其与结构相互作用的误解是由于对超压和动压之间的差异缺乏了解引起的。此外,我们必须牢记,大多数固体材料(无论是木材还是钢铁)的密度至少是空气的1000倍,因此移动速度会比加载它们的气流快千分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号