首页> 外文会议>Annual SEMI Advanced Semiconductor Manufacturing Conference >On-product eBeam overlay topic/category AM: Advanced metrology
【24h】

On-product eBeam overlay topic/category AM: Advanced metrology

机译:产品上的eBeam重叠主题/类别AM:高级计量

获取原文

摘要

The semiconductor industry is facing constant overlay challenge posed by tighter overlay error budget and the increase of multi-patterning layers in 14nm node and beyond. While the allowed total measurement uncertainty (TMU) for Overlay metrology is already extremely low due to the ever tightening overlay budget, discrepancies between optical overlay results and electrical test data raise the inaccuracy concerns which are largely induced by the imperfections and asymmetry of the overlay marks located in scribe line. The process impact in the representative overlay targets is also a poor representation of real indie device, which further exaggerate the inaccuracies. Current optical overlay tools have specification for sensitivity to On-Product Overlay (OPO), which is a representation of measurement accuracy but the lack of reference to validate said measurement outcome calls for an indirect method to confirm real overlay. Improvement in overlay control is crucial to accelerate yield learning in high-volume manufacturing (HVM) fabs. In this work, inline eBeam-based Overlay metrology via Scanning electron microscope (SEM) is developed as reference metrology for inline optical overlay to characterize in-die, across-device, on-product overlay behavior at multi-patterning post-etch steps in order to address challenges present in OPO. This method incorporates high resolution imaging, physical measurement, and a Center of Gravity (Cog) algorithm to archive sub-nm precision while indirectly obtaining true overlay. Random Located eBeam Overlay (RLEO) scheme is designed to ensure process compatibility, by selecting small sets of 2D structures spread across the field. These small regions of interest are then measured with much higher resolution under eBeam rather than visible light, currently utilized by the state of the art overlay tools. Another On-product Overlay qualification strategy is demonstrated and by combining the advantages of eBeam and Optical Overlay to balance the precision, accuracy, and productivity, thus improving on-product optical overlay performance. Methods described above, when applied to optical overlay marks, can also assist in singling out the best performing overlay targets (i.e. blossom (BLO), diffraction based overlay (DBO), advanced imaging metrology (AIM), or scatterometry overly (SCOL)) and measurement conditions for a given layer via optical vs eBeam overlay correlation (R). Future work will investigate advanced applications of RLEO method to address challenges presented by four components of the overlay budget calculation; mask, scanner, process, and inline optical overlay, also offers techniques to isolate and control these hidden overlay factors unearthed by eBeam Overlay (EBO).
机译:半导体行业正面临着越来越严峻的叠层挑战,这是由于紧缩的叠层误差预算以及14nm节点及以后的多图案层的增加所造成的。尽管由于重叠预算的不断收紧,叠加计量的允许总测量不确定度(TMU)已经非常低,但是光学叠加结果和电气测试数据之间的差异引起了不准确性的担忧,这主要是由叠加标记的不完善和不对称引起的位于划线处。代表性覆盖目标中的过程影响也是真实独立设备的较差表示,这进一步夸大了不准确性。当前的光学覆盖工具具有对产品上覆盖(OPO)的灵敏度的规范,这是测量精度的一种表示,但是缺乏验证所述测量结果的参考,因此需要一种间接方法来确认真实的覆盖。重叠控制的改进对于加快大批量制造(HVM)晶圆厂的良率学习至关重要。在这项工作中,通过扫描电子显微镜(SEM)的基于在线eBeam的覆盖量测技术被开发为用于在线光学覆盖的参考量测技术,以表征在多图案后蚀刻步骤中芯片,跨器件,产品上的覆盖行为。为了解决OPO中存在的挑战。该方法结合了高分辨率成像,物理测量和重心(Cog)算法,以归档亚纳米精度,同时间接获得真实的覆盖图。随机定位电子束覆盖(RLEO)方案旨在通过选择分布在整个现场的少量2D结构集来确保过程兼容性。然后,在电子束下而不是可见光下以更高的分辨率测量这些感兴趣的小区域,而目前这是最先进的叠加工具所利用的区域。通过结合eBeam和光学覆盖层的优势来平衡精度,准确性和生产率,展示了另一种产品覆盖层认证策略,从而提高了产品光学覆盖层性能。上述方法在应用于光学覆盖标记时,还可以帮助挑选出性能最佳的覆盖目标(例如,开花(BLO),基于衍射的覆盖(DBO),高级成像计量学(AIM)或过度散射测量(SCOL))光学对eBeam重叠相关(R)对给定层的测量条件和测量条件。未来的工作将研究RLEO方法的高级应用,以解决重叠预算计算的四个组成部分所带来的挑战;掩模,扫描仪,工艺和在线光学覆盖,还提供了隔离和控制eBeam Overlay(EBO)挖掘出的这些隐藏的覆盖因子的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号