首页> 外文会议>International Conference on Nanotechnology >Atomistic simulation of III-nitride core-shell QD solar cells
【24h】

Atomistic simulation of III-nitride core-shell QD solar cells

机译:III族氮化物核壳QD太阳能电池的原子模拟

获取原文

摘要

Multiscale computational simulations are performed to investigate how electronic structure and optical absorption characteristics of recently reported nanostructured III-nitride core-shell multiple quantum well (MQW) solar cells are governed by an intricate coupling of size-quantization, atomicity, and built-in structural and polarization fields. The core computational framework is divided into four coupled phases: i) geometry construction for the wurtzite lattice in polar and nonpolar crystallographic orientations; ii) structural relaxation and calculation of atomistic strain distributions; iii) obtaining the induced polarization and internal potential distributions; iv) computing the single-particle electronic structure and optical transition probabilities using a 10-band sp3 s*-spin tight-binding framework; and v) obtaining the device terminal characteristics using a TCAD toolkit. Special care was taken in incorporating the nonpolar rn-plane crystallographic orientation within the simulator via appropriate lattice vectors, rotational matrices, neighboring atom co-ordinates and sp3-hybridized passivation scheme. From the simulations, it is found that, in contrast to some recent studies, atomistic strain in the rn-plane structure induces non-vanishing piezoelectric polarization, which leads to a symmetry-lowering of the structure. Nevertheless, the rn-plane structure exhibits a stronger overlap and localization of the wavefunctions, as compared to the c-plane counterpart. Overall, the rn-plane structure offers higher spontaneous emission rate and quantum efficiency as well as an improved Jill-factor.
机译:进行多尺度计算仿真以研究最近报道的纳米结构III型氮化物核-壳多量子阱(MQW)太阳能电池的电子结构和光吸收特性如何受尺寸量化,原子性和内置结构的复杂耦合支配和极化场。核心计算框架分为四个耦合阶段:i)纤锌矿晶格在极性和非极性晶体取向上的几何构造; ii)结构弛豫和原子应变分布的计算; iii)获得感应极化和内部电势分布; iv)使用10波段sp 3 s * -spin紧密结合框架计算单粒子电子结构和光学跃迁几率; v)使用TCAD工具包获得设备终端特性。特别注意通过适当的晶格矢量,旋转矩阵,相邻原子坐标和sp 3 杂交钝化方案将非极性rn平面晶体学方向并入模拟器。从仿真中发现,与最近的一些研究相比,rn平面结构中的原子应变会引起压电极化不消失,从而导致结构对称性降低。然而,与c平面对应物相比,rn平面结构表现出更强的波函数重叠和局部化。总体而言,rn平面结构可提供更高的自发发射速率和量子效率以及改善的吉尔因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号