首页> 外文会议>Annual Device Research Conference >Narrow terahertz plasmon resonance of quasi-freestanding bilayer epitaxial graphene
【24h】

Narrow terahertz plasmon resonance of quasi-freestanding bilayer epitaxial graphene

机译:准独立双层外延石墨烯的窄太赫兹等离子体激元共振

获取原文

摘要

Graphene's ability to support and manipulate THz surface plasmon polaritons make it an ideal material for tunable THz detectors operating at room temperature [1]. Currently, however, THz plasmonic resonances in epitaxially grown graphene result in broad line widths (γ) >100 cm-1 at the plasmon resonance frequency [2]. This is attributed to the partially covalent bonding between the silicon carbide (SiC) substrate and the 6√3 buffer layer between the substrate and epitaxial graphene (EG), inducing electron-phonon coupling and Coulomb scattering resulting in low carrier mobility (500-1200 cm2 V-1s-1). The buffer layer can be decoupled from the SiC by hydrogen intercalation where the passivation of Si dangling bonds promotes an additional EG layer to become quasi-freestanding bilayer epitaxial graphene (QBLEG) as shown in Fig. 1a [3]. We found that by removing this substrate induced scattering, sheet carrier density changed to p-type (~1013 cm-2) and high carrier mobility (3300-4000 cm2 V-1s-1) was observed across nominally bilayer graphene as shown by Raman in Fig. 1b. In this work we investigate if high mobility EG will result in narrowing the plasmon resonances in the THz regime as reported by theory [2].
机译:石墨烯具有支持和操纵太赫兹表面等离激元极化子的能力,使其成为在室温下工作的可调太赫兹检测器的理想材料[1]。然而,目前,外延生长的石墨烯中的太赫兹等离子体激元共振导致在等离子体激元共振频率处的线宽(γ)> 100 cm-1 [2]。这归因于碳化硅(SiC)衬底与衬底与外延石墨烯(EG)之间的6√3缓冲层之间的部分共价键合,引起电子-声子耦合和库仑散射,从而导致低载流子迁移率(500-1200) cm2 V-1s-1)。缓冲层可以通过氢插入与SiC分离,其中Si悬空键的钝化促进额外的EG层变为准独立的双层外延石墨烯(QBLEG),如图1a所示[3]。我们发现,通过消除这种基底引起的散射,片状载流子密度变为p型(〜1013 cm-2),并且在标称双层石墨烯上观察到高载流子迁移率(3300-4000 cm2 V-1s-1),如拉曼所示。在图1b中。在这项工作中,我们研究了高迁移率EG是否会导致理论上报道的太赫兹范围内的等离子体激元共振变窄[2]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号