首页> 外文会议>AIAA aviation forum;AIAA fluid dynamics conference >Telescopic Approach for Extreme-scale Parallel Mesh Generation for CFD Applications
【24h】

Telescopic Approach for Extreme-scale Parallel Mesh Generation for CFD Applications

机译:用于CFD应用的极大规模并行网格生成的伸缩方法

获取原文

摘要

The long term goal of this project is to address the following two challenges related to Extreme-scale Anisotropic Mesh Generation Environments: (1) Design a multi-layered algorithmic and software framework for 3D tetrahedral parallel mesh generation using state-of-the-art fully functional mesh generation codes like AFLR3 and a novel telescopic approach for current and emerging parallel architectures with several layers in network and memory hierarchy. The proposed approach explores concurrency at all hardware layers using abstractions at: (a) medium-grain level for many cores within a single chip and (b) coarse-grain level, i.e., sub-region and sub-domain level using proper error metric- and application-specific discrete data and continuous decomposition methods. The objective is to achieve and sustain a billion-way concurrency the next 15 years by (ⅰ) leveraging concurrency at different granularity levels and (ⅱ) carefully mapping work units to take advantage of the memory and network hierarchies. (2) Design a Parallel Runtime System for extreme-scale dynamic and irregular computations like mesh generation and refinement for CFD solvers. The runtime system will provide support for: (a) One-sided explicit message passing, (b) Global name-space, © multi-threaded programming model for inter-layer interactions, (d) automatic load balancing, (e) customizable data-movement and load-balancing, and (f) domain-specific energy-efficient race-to-halt, concurrency throttling, and component-level (core and memory) power scaling. Preliminary results from early stages of this work on parallel isotropic 3D Delaunay-based guaranteed quality mesh generation suggest that it is feasible to meet industries expectations and NASA's CFD vision for 2030~1.
机译:该项目的长期目标是解决与极端规模各向异性网格生成环境相关的以下两个挑战:(1)使用最新技术设计多层算法和软件框架,用于3D四面体并行网格生成功能齐全的网格生成代码(如AFLR3)和一种新颖的伸缩方法,用于网络和内存层次结构中具有多层的当前和新兴并行体系结构。所提出的方法使用以下抽象概念探索所有硬件层的并发性:(a)单个芯片中许多内核的中等粒度级别;(b)粗粒度级别,即使用适当的错误度量的子区域和子域级别-以及特定于应用程序的离散数据和连续分解方法。目的是通过(ⅰ)利用不同粒度级别的并发并(ⅱ)仔细地映射工作单元以利用内存和网络层次结构,在未来15年内实现并维持十亿路并发。 (2)设计并行运行系统,用于极端规模的动态和不规则计算,例如CFD求解器的网格生成和优化。运行时系统将为以下方面提供支持:(a)单侧显式消息传递,(b)全局名称空间,©用于层间交互的多线程编程模型,(d)自动负载平衡,(e)可自定义的数据-移动和负载平衡,以及(f)特定领域的高能效竞争到暂停,并发节流和组件级(核心和内存)功率缩放。这项基于基于Delaunay的平行各向同性3D保证质量网格生成的工作的早期阶段的初步结果表明,满足行业期望和NASA对2030〜1的CFD愿景是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号