首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech Forum >COMPUTATIONS OF AERODYNAMIC BEHAVIOUR OF RECTANGULAR WING WITH NACA653218AIRFOIL
【24h】

COMPUTATIONS OF AERODYNAMIC BEHAVIOUR OF RECTANGULAR WING WITH NACA653218AIRFOIL

机译:用NACA653218机翼计算矩形机翼的气动行为。

获取原文

摘要

In this research we have obtained the drag and lift coefficients, velocity, pressure and pathlines contours using CFD which can also be determined through experiments using wind tunnel testing. In experimental setup, the design model has to be placed in the test section. This process is quite laborious and surely cost more than CFD techniques cost for the same. A numerical procedure is described for determination and estimation aerodynamic properties of three dimension subsonic NACA653218airfoil rectangular wing with chord length 121 mm and semi span 330 mm. Firstly, the wing model profile, boundary conditions and meshes were all created in GAMBIT® 2.3.16 as a pre-processor. The second step in performing a CFD simulation should be to investigate the effect of the mesh size on the solution results. In present, work using multi-block unstructured grid to increase grids near wing and decrease grid far from wing to increase the uncertainty of solution and decrease the time of solution. The total number of cells in the full grid is 1500000, the volume of the smallest grid is 3.5×10-11 m3, and the volume of the largest grid is 5.799755×10-4 m3. The third step is validation of the CFD NACA65_3218airfoil rectangular wing shape model by Spalart-Allmaras turbulence model with available experimental data for the same model and operation conditions. The free stream temperature is 288.2 K, which is the same as the environmental temperature. The density of the air at the given temperature is ρ=1.225kg/m~3, the pressure is 101325 Pa and the viscosity is μ=1.7894×10~(-5) kg/m s. Reynolds number for the Pressure farfield boundary was Re=2.89×10~5. A segregated, implicit solver was utilized (ANSYS FLUENT® processor) Calculations were done for angles of attack ranging from 0 to 12°. The results show good agreement of lift coefficient with the corresponding values in the experimental and numerical models measurements. It is found maximum error by Spalart-Allmaras model is about 25%. The results show good agreement of drag coefficient with the corresponding values in the experimental and numerical models measurements. It is found maximum error by Spalart-Allmaras model is about 35%.
机译:在这项研究中,我们使用CFD获得了阻力和升力系数,速度,压力和路径等高线,也可以通过使用风洞测试的实验来确定。在实验设置中,必须将设计模型放置在测试部分中。此过程非常费力,并且肯定比相同的CFD技术花费更多。描述了一种数值程序,用于确定和估计弦长为121 mm,半跨度为330 mm的三维亚音速NACA653218翼型矩形机翼的空气动力学特性。首先,机翼模型轮廓,边界条件和网格都是在GAMBIT®2.3.16中作为预处理程序创建的。执行CFD模拟的第二步应该是研究网格尺寸对求解结果的影响。目前,采用多块非结构网格增加机翼靠近机翼的网格,减小机翼远离机翼的网格,增加了求解的不确定性,缩短了求解时间。全网格中的单元总数为1500000,最小网格的体积为3.5×10-11 m3,最大网格的体积为5.799755×10-4 m3。第三步是通过Spalart-Allmaras湍流模型验证CFD NACA65_3218翼型矩形机翼形状模型,并使用相同模型和运行条件下的可用实验数据。自由流温度为288.2 K,与环境温度相同。给定温度下的空气密度为ρ= 1.225kg / m〜3,压力为101325Pa,粘度为μ= 1.7894×10〜(-5)kg / m s。压力远场边界的雷诺数为Re = 2.89×10〜5。使用了隔离的隐式求解器(ANSYSFLUENT®处理器),计算了迎角从0到12°的范围。结果表明,在实验和数值模型测量中,升力系数与相应值具有良好的一致性。通过Spalart-Allmaras模型发现最大误差约为25%。结果表明,在实验和数值模型测量中,阻力系数与相应值具有良好的一致性。通过Spalart-Allmaras模型发现最大误差约为35%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号