首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech Forum >An Experimental Investigation on Unsteady Heat Transfer and Transient Icing Process upon Impingement of Water Droplets
【24h】

An Experimental Investigation on Unsteady Heat Transfer and Transient Icing Process upon Impingement of Water Droplets

机译:水滴撞击时的非稳态传热和瞬态结冰过程的实验研究

获取原文

摘要

This study presents an experimental investigation of a single droplet with different impingement velocity impinge on the hydrophilic and superhydrophobic substrates under normal and icing temperature by using high-speed image and infrared image techniques. The aim is to better understand the unsteady heat transfer and transient icing process of the aircraft icing caused by the supercooled large droplets, which has been recently identified as a severe hazard in aviation. The Reynolds number and Weber number of the impingement droplet ranged from 3708 to 6109 and from 117 to 319, respectively, while the temperature of the impingement substrate ranged from -5°C to 5°C. Droplet impingement, spreading, receding, and rebound phenomenon was recorded by a high-speed imaging system, while the surface temperature variation upon the impingement droplet on the substrate was recorded by an infrared imaging system. The time needed for the impingement droplet to be static on the superhydrophobic surface was much shorter than that on hydrophilic surface, while the time needed for cooling the impingement droplet on the superhydrophobic surface was much longer. The temperature variation on the surface of the impingement droplet was gradually on superhydrophobic substrate, while that on the hydrophilic substrate under icing temperature had obvious fluctuation. For the hydrophilic substrate, the temperature had little influence to the maximum spreading diameter of the impingement droplet, while the final receding diameter of the impingement increased with the decreasing of the substrate temperature, moreover, the water temperature decreasing speed increased while the icing process was faster. Lower droplet impingement velocity would lead to a slower cooing process of water and a slower icing process, while the temperature fluctuation at the surface center of the impingement droplet decreased for a shorter water receding time.
机译:本研究通过高速图像和红外图像技术,对在常温和结冰温度下具有不同撞击速度的单个液滴撞击在亲水性和超疏水性基材上进行了实验研究。目的是更好地理解由过冷的大液滴引起的飞机结冰的不稳定传热和瞬态结冰过程,近来在航空中已将其识别为严重危害。冲击液滴的雷诺数和韦伯数分别在3708至6109和117至319的范围内,而冲击基板的温度在-5°C至5°C的范围内。高速成像系统记录了液滴的撞击,扩散,后退和回弹现象,而红外成像系统记录了基板上撞击液滴的表面温度变化。在超疏水性表面上,使冲击液滴保持静态所需的时间比在亲水性表面上的所需时间短得多,而在超疏水性表面上的冲击液滴的冷却所需的时间长得多。在结冰温度下,撞击液滴表面的温度变化逐渐在超疏水性基材上变化,而亲水性基材上的温度变化明显。对于亲水性基材,温度对撞击液滴的最大散布直径影响不大,而撞击的最终后退直径随基材温度的降低而增加,此外,在结冰过程中水温降低速度增加。快点。较低的液滴撞击速度将导致较慢的水冷却过程和较慢的结冰过程,而撞击液滴表面中心处的温度波动会在较短的退水时间内减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号