首页> 外文会议>Boeing Gordon Center for Systems Engineering;Israel annual conference on aerospace sciences >Intersatellite Laser Ranging and Attitude Robust Measurement Planning
【24h】

Intersatellite Laser Ranging and Attitude Robust Measurement Planning

机译:卫星间激光测距和姿态稳健测量计划

获取原文

摘要

This paper introduces a novel methodology for robust intersatelliteranging and attitude measurement planning via a case study of two lowEarth orbit small satellites ying in formation. The relative positionmodel express the curvilinear coordinates dynamics of the Follower inthe Leader centered local frame, and includes deterministic eects ofthe J2 acceleration. The relative attitude model express the linearizeddynamics of the Euler angles from the Leader centered local frame tothe Follower body frame and includes the Gravity-Gradient torque. Theatmospheric air density is modeled as a stochastic process perturbingboth accelerations and torques. Its means and variances are calibratedvia Monte-Carlo simulations of a high-delity Truth model. Measuredintersatellite ranges and relative attitudes are processed along a niteperiod of time via a Kalman lter to produce estimates of a twelve statesvector of relative position and attitude and of their rates. The estimationerror covariance matrix at the nal time possess a known upper boundfunction of the observability and noise controllability Gramians.First an optimal ranging strategy is developed by nding the rangingnoise variance prole that minimizes the upper bound. The minimiza-tion is subject to a time integral constraint on the noise variance that isderived from a laser energy budget. This results in a remarkably shortsequence of ranging epoch times. Then that problem is extended tothe maximization of the upper bound with respect to the atmosphericdensity variance prole. The density variance is assumed to satisfy atime integral constraint, derived from nite energy considerations andquantied through Monte-Carlo simulations. The problems are solvedthrough numerical iterative schemes and their solutions consist of veryfew ranging acquisition times, atmospheric density impulses, along withthe corresponding optimized intensities. The combined solution to bothproblems thus provides a robust laser ranging planning over a given win-dow of time. Robustness is here in terms of guaranteed performanceson the estimation error covariance matrix at the nal time: its upperbound is designed for the worst-case atmospheric density prole alongthe scheduled trajectory. The proposed design has got appealing prac-tical features such as: very few ranging epoch times compared withcontinuous ranging, for a given overall laser energy budget; very fewprocess noise impulses, compared with continuous process noise, for agiven overall noise energy. Extensive simulations are performed that verify the algorithms convergence and validate the proposed approach.Extensive Monte-Carlo simulations are also presented to compare theperformances of Kalman lters designed via the proposed approach withothers based on continuous measurement and process noise.
机译:本文介绍了一种新的鲁棒星际方法 通过两个低点的案例研究进行测距和姿态测量计划 地球轨道小型卫星 在形成中。相对位置 模型表示随动件中的曲线坐标动力学。 领导者以本地框架为中心,并包括 J2加速度。相对姿态模型表示线性化 欧拉角的动态变化,从“先导”居中局部帧到 从动体框架,包括重力梯度扭矩。这 大气密度模拟为随机过程扰动 既有加速度又有扭矩。其均值和方差已校准 通过蒙特卡洛对高真实度模型的仿真。实测 沿星际处理星际距离和相对姿态 一段时间通过卡尔曼滤波器产生十二个州的估计值 相对位置和态度及其比率的向量。估计 最终时间的误差协方差矩阵具有已知的上限 可观测性和噪声可控性的功能。 首先,通过找到测距来制定最佳测距策略 使上限最小化的噪声方差图。最小化 位置受噪声方差的时间积分约束,即 从激光能量预算中得出。这导致非常短的时间 测距时间的顺序。然后,这个问题扩展到 相对于大气上限的最大化 密度方差分析假定密度方差满足 时间积分约束,是从有限的能量考虑中得出的,以及 通过蒙特卡洛模拟进行量化。问题解决了 通过数值迭代方案及其解决方案包括 很少的测距采集时间,大气密度脉冲以及 相应的优化强度。两者的组合解决方案 因此,问题可在给定的获胜条件下提供可靠的激光测距计划, 的时间。稳健性是保证性能的保证 最终时间的估计误差协方差矩阵:其上限值 边界是针对最坏情况下的大气密度分布而设计的 预定的轨迹。拟议的设计具有引人注目的效果- 诸如以下的实际功能:与之相比,很少的测距时间 对于给定的整体激光能量预算,连续测距;很少 与连续过程噪声相比,过程噪声脉冲 给定整体噪声能量。进行了广泛的仿真,以验证算法的收敛性并验证所提出的方法。 还提供了广泛的蒙特卡洛模拟,以比较 通过提出的方法设计的卡尔曼滤波器的性能与 其他基于连续测量和过程噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号