首页> 外文会议>IAEE international conference;International Association for Energy Economics >WHAT IS THE OPTIMAL EXHAUSTION PACE OF LITHIUM RESOURCES IN SOUTH AMERICA?
【24h】

WHAT IS THE OPTIMAL EXHAUSTION PACE OF LITHIUM RESOURCES IN SOUTH AMERICA?

机译:南美锂资源的最佳消减速度是多少?

获取原文
获取外文期刊封面目录资料

摘要

OverviewThis paper presents a simulation of the global market of lithium, with focus on lithium supply from South America.Lithium is a necessary material in the production of batteries that power electric cars, among other electronicartefacts. The Andean region integrated by Argentina, Bolivia and Chile (The ABC triangle) holds the world’sbiggest lithium reserves ever known. These countries have the intent to explore their natural resources on its ownand in a sustainable way. We will investigate to what extent wealth maximizing strategies of these countries imply aslower global energy transition towards electric cars and other use of batteries for energy storage. Since lithium is adurable and recyclable resource, there is need to know what is the efficient amount of recycling lithium batteries aswell. So, what is the optimal exhaustion rate of lithium? Moreover, what is the future role of lithium suppliers forthe diffusion of clean energy?Scholars have extensively analyzed optimal resources depletion. However, as far as we know, there are no previouseconomic studies about how to estimate the optimal exploitation of lithium resources considering the possibility ofrecycling. This paper defines an emerging problem for energy transitions and try to fill the gap in existingknowledge about reusing lithium resources.MethodsA global market for lithium is formulated as a Mixed Linear Complementarity Model - MCP. In order to know whatis the optimal exhaustion rate of lithium resources in South America we draw on the economic theory of exhaustibleresources. We develop an analytical and numerical simulations (using GAMS) model of the global lithium marketunder perfect competition and incorporate different assumptions about technological development of electricvehicles, batteries disposability and recycling.The model is constituted by three building blocks: supply, demand and recycling marketplace. We consider Ndemand regions and one or two sectors in each region (transport and possibly energy storage in the power market).The demand function depends on lithium prices, income and prices of other goods, where the elasticity ofsubstitution between lithium and other materials or products are important.On the supply side, we consider M producers (starting with M=4, Chile, Argentina, Bolivia, Rest-of-world).Initially, we assume a competitive supply where each producer considers the prices as given. Afterward, we willconsider Cournot supply. Constant unit costs are measured to represent the cost of lithium production. The costfunction will change when taking into account both accumulated supply and exogenous technological progress.In the recycling marketplace, we analyse the efficient amount of reusing lithium by exploring cost of disposal,quality and prices of the recycled material. The efficient amount would define to what extent recycled lithium is a(perfect) substitute of primary lithium. Some environmental costs related to lithium disposal and waste can beincluded and used to asses to what extent an efficient amout of recycled lithium can be produced automatically bythe market without government intervention.The key assumption of this problem is that lithium is a durable resource. This has two implications: first, the demandof a durable resource is for quantities of stock in circulation, rather than for flows of production (Levhari andPyndick, 1981). And second, the price of a durable good in any period is a function not only of current and pastproduction, but also of acticipated future production, since that future production and current recycling will affectprices (Stewart, 1980).The traditional theory of exhaustible resources has focused on deducing what is the optimal extraction path overtime for any particular non-renewable resource stock. Only a few papers have focused on the impact of durableexhaustible resources on pricing, inter-temporal production and efficiency conditions (Schulze (1973), Stewart(1980), Levhari and Pindyck (1981) and Chilton (1984)).The literature provides a discussion on the major characteristics of durable exhaustible resources, and an examination of the models for resources exhaustion regarding different optimization settings, and private and publicconcerns as well.The durability of an exhaustible resource can be defined by a group of physical characteristics and, correspondingly,by its demand and supply patterns. In general, a durable exhaustible resource is re-usable at some future date. Thereis a possibility of “mining” accumulated stocks of waste or scrap minerals to extend the time horizon of resourceavailability (Schulze 1974). Therefore, there is also an opportunity of supplanting extraction with waste recoveryand release tensions about scarcity and dependency concerns. In addition, a durable exhaustible resource does notwear out during the firm’s planning horizon (Stewart, 1980, p.100). So, the purchaser of a durable product wouldfrequently not re-enter the market until his earlier purchase has “worn out” (Ibid.)The problem of exhaustible and durable resources can lie on scheduling its production (Stewart ,1980). In manyindustries, including extractive industries, firms may find that their most important competition comes not fromother firms’ products, but from their own earlier production. This is due to the existence of efficient second-handmarkets or the frequency of purchasing products with long lasting use. However, recycling does not guarantee anincreasing availability of resources when taking into account the declining quality of the second hand resource.Weinstein et al. (1974) discuss additional patterns for depletable and recyclable resources. They examine thebehavior of markets with depletable resources where market interest rates are determined endogenously with zerocost of recycling and constant costs of extraction.ResultsWe resolve how prices of primary and second hand lithium are determined and how lithium companies and othermarket players behave. We develop a case study of the ABC Triangle of lithium and analyse the challenges of thesecountries to prosper and survive in the ever-changing international energy system. This paper also includes adiscussion about optimal resource extraction, where optimality and sustainability are congruent notions.ConclusionsThis study is important for regulatory reasons and to anticipate challenges for energy transitions as well. On onehand, if lithium production tends to be concentrated, market power may lead to a too slow diffusion of lithiumbatteries. On the other hand, recycling can be used as a defensive way (behavior) for consumers (importers) againstmarket power. This study can be used to discuss some policy measures for lithium exhaustion and recycling in acircular economy.
机译:概述 本文介绍了锂全球市场的模拟,重点是南美洲的锂供应。 锂电池是生产电动汽车,电动汽车的电池的必要材料 人工制品。阿根廷,玻利维亚和智利(ABC三角)综合的安第斯地区持有世界 最大的锂储备留给了。这些国家有目的是自己探索他们的自然资源 并以可持续的方式。我们将调查这些国家的最大化战略的程度意味着 向电动汽车的全球能源转变速度较慢,其他使用电池供储能。由于锂是一个 耐用和可回收的资源,需要知道锂电池的有效量是多少 出色地。那么,锂的最佳耗尽率是多少?此外,锂供应商的未来作用是什么? 清洁能量的扩散? 学者们已经广泛分析了最佳资源耗尽。但是,据我们所知,没有以前的 关于如何估算锂资源的最佳利用的经济研究 回收。本文定义了能源转换的新出现问题,并尝试填补现有的差距 关于重用锂资源的知识。 方法 全球锂市场作为混合线性互补模型 - MCP制定。为了了解什么 是南美锂资源的最佳耗尽率,我们利用了令人难以置信的经济理论 资源。我们开发了全球锂市场的分析和数值模拟(使用Gams)模型 在完美的竞争下,纳入电气技术发展的不同假设 车辆,电池一次性性和再循环。 该模型由三个构建块构成:供应,需求和回收市场。我们考虑n 每个地区的需求地区和一个或两个部门(在电力市场中运输和可能的储能)。 需求功能取决于锂价格,收入和其他商品的价格,其中弹性 锂和其他材料或产品之间的取代很重要。 在供应方面,我们考虑M生产者(从M = 4,智利,阿根廷,玻利维亚,世界休息)开始。 最初,我们假设每个生产商都认为如上所提供的价格。之后,我们会 考虑Cournot供应。测量恒定单位成本以表示锂生产的成本。成本 在考虑到累计供应和外源技术进步时,功能将改变。 在回收市场中,我们通过探索处置成本来分析重复锂的有效量, 再生材料的质量和价格。有效量将定义回收锂的程度 (完美)原发性锂替代品。与锂处理和废物有关的一些环境成本可以是 包括并用来判断可自动生产回收锂的有效术语的程度 市场没有政府干预。 这个问题的关键假设是锂是持久资源。这有两个含义:第一,需求 持久资源是循环中的库存数量,而不是生产流量(Levhari和 Pyndick,1981)。其次,任何时期都有持久良好的价格是一个不仅是当前和过去的函数 生产,但也是被证券化的未来生产,因为未来的生产和当前回收都会影响 价格(Stewart,1980)。 传统的易用资源理论侧重于推导出最佳提取路径 任何特定的不可再生资源库存的时间。只有几篇论文专注于耐用的影响 令人毛骨悚然的资源,跨时期生产和效率条件(Schulze(1973),Stewart (1980),Levhari和Pindyck(1981)和Chilton(1984年))。 该文献提供了讨论耐用耐用资源的主要特点,以及对有关不同优化环境的资源耗尽的模型,以及私立和公共的审查 问题也是如此。 易于资源的持久性可以由一组物理特征和相应地定义, 通过其需求和供应模式。一般而言,在未来日期可重复使用耐用的易用资源。那里 是“挖掘”累积废物或废矿物储存的可能性,以延长资源的时间范围 可用性(Schulze 1974)。因此,还有机会用废物恢复提取提取 并释放关于稀缺和依赖关系的紧张局势。此外,耐用的易用资源没有 在公司的规划地平线期间磨损(Stewart,1980,第100页)。因此,耐用产品的购买者会 经常不重新进入市场,直到他先前的购买“用完”(同上)。 耗尽资源和持久资源的问题可能在于计划其生产(Stewart,1980)。在许多 行业,包括采掘业,企业可能会发现他们最重要的竞争并非来自 其他公司的产品,但来自他们自己的早期生产。这是由于存在高效的二手货 市场或长期使用产品的购买频率。但是,回收并不能保证 考虑到二手资源质量下降时,增加资源的可用性。 温斯坦(Weinstein)等人。 (1974)讨论了可消耗和可回收资源的其他模式。他们检查 资源枯竭的市场的行为,其中市场利率由零内生地确定 回收成本和固定提取成本。 结果 我们解决如何确定一次和二手锂的价格以及锂公司和其他公司的定价 市场参与者的行为。我们以锂的ABC三角为例进行了研究,并分析了这些挑战 国家在瞬息万变的国际能源体系中繁荣发展和生存。本文还包括 关于最优资源提取的讨论,其中最优性和可持续性是一致的概念。 结论 出于监管方面的原因,这项研究也很重要,并且可以预见能源转型的挑战。在一个 反之,如果锂生产趋于集中,则市场力量可能会导致锂扩散太慢 电池。另一方面,回收可以用作消费者(进口商)的防御方式(行为) 市场力量。这项研究可以用来讨论一些锂排放和循环利用的政策措施。 循环经济。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号