首页> 外文会议>American Society for Composites technical conference;American Society for Composites >Composite De-Tooling Simulation Using an Improved Plate and Shell Theory Base on Mechanics of Structure Genome
【24h】

Composite De-Tooling Simulation Using an Improved Plate and Shell Theory Base on Mechanics of Structure Genome

机译:基于结构基因组力学的改进板壳理论的复合材料脱模仿真

获取原文

摘要

Classical shell elements have difficulty to accurately capture the nonlinear throughthicknessstress gradients and the stresses due to material anisotropy. The improvedplate and shell theory by means of Mechanics of Structure Genome (MSG) appears asa feasible approach to reproduce high fidelity residual stress simulations in thermosetpolymers while greatly reducing the computational time. The Structure Genome (SG)is defined as the smallest mathematical building block of the structure containingmany such building blocks. For composite laminates, the reference surface can bedescribed as a 2D continuum and the microstructure of every material point of thiscontinuum is modeled by means of the specific SG, which is the material line of thetransverse normal. Thereby, the original 3D anisotropic elasticity problem is cast inan intrinsic form and hence, arbitrarily large displacements and global rotations canbe handled subjected only to strains being small. In this work the simulation of a continuousfiber-reinforced composite de-tooling process using two different approachesis presented, which are then compared against the detailed 3D FEA developed in theABAQUS/COMPRO CCA platform. On the one hand, smeared though-thicknessproperties are considered in the ABAQUS/COMPRO CCA platform in order to minimizethe amount three-dimensional solid elements required. On the other hand, thesame simulation is carried out using the MSG-based plate and shell theory. The comparisonof the results reveal that later methodology considerably reduces the computationaltime and cost without compromising the accuracy of displacement resultsand providing detailed stress distribution.
机译:经典的壳单元很难准确地捕获非线性贯穿厚度 应力梯度和材料各向异性引起的应力。改进的 通过结构基因组力学(MSG)的板壳理论 一种在热固性塑料中重现高保真残余应力模拟的可行方法 聚合物,同时大大减少了计算时间。结构基因组(SG) 被定义为包含以下内容的结构的最小数学构造块 许多这样的构建块。对于复合层压板,参考表面可以是 描述为2D连续体,并且此材料的每个实质点的微观结构 连续体是通过特定的SG建模的,该SG是 横向法线。从而,产生了原始的3D各向异性弹性问题 固有的形式,因此,任意大的位移和整体旋转都可以 只能承受很小的应变。在这项工作中,连续的模拟 纤维增强复合材料的脱模工艺,采用两种不同的方法 呈现,然后将其与在 ABAQUS / COMPRO CCA平台。一方面,涂抹厚度 在ABAQUS / COMPRO CCA平台中考虑了属性,以最大程度地减少 所需的三维实体元素数量。另一方面, 使用基于MSG的板壳理论进行了相同的仿真。比较 结果表明,后来的方法大大减少了计算量 时间和成本,同时不影响位移结果的准确性 并提供详细的应力分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号