首页> 外文会议>International conference on artificial neural networks >Multistable Attractor Dynamics in Columnar Cortical Networks Transitioning from Deep Anesthesia to Wakefulness
【24h】

Multistable Attractor Dynamics in Columnar Cortical Networks Transitioning from Deep Anesthesia to Wakefulness

机译:柱状皮质网络从深麻醉过渡到清醒的多稳态吸引子动力学

获取原文

摘要

Slow rhythms of activity (~ 1 Hz) are a universal hallmark of slow-wave sleep and deep anesthesia across many animal species. A remarkably reproducible default mode with a low degree of complex­ity which opens a window on the brain multiscale organization, on top of which cognitive functions emerge during wakefulness. Understanding how such transition takes place starting from the characterization of a stereotyped state like the slow-wave activity, might shade light on the emergence of the rich repertoire of neuronal dynamics underlying brain computation. Sleep-wake transition is a widely studied phenom­enon, however it is still debated how brain state changes occur. Here we show from intracortical recordings in anesthetized rats, that sleep-like rhythms fade out when wakefulness is approached giving rise to an alternation between slow Up/Down oscillations and awake-like activity periods. This phase of activity pattern bistability is captured by a mean-field rate-based model of a cortical column, in which for a transient range of anesthesia levels the coexistence of two metastable attractor states emerges. Alternation between these two states is granted by the ongoing competition of local features and exogenous modulations gov­erning both the excitability and the fatigue level of the modeled column. Our results highlight a brain state transition which is not a continuous smooth change but rather a progressive modulation of the stability of two coexistent activity regimes, which in turn leave different fingerprints across cortical columns. Guided by this mean-field model, spiking neu­ron networks are devised to reproduce the electrophysiological changes displayed during the transition.
机译:缓慢的活动节奏(〜1 Hz)是慢波睡眠和多种动物深麻醉的普遍特征。一种具有低复杂度的可重现的默认模式,为大脑多尺度组织打开了一个窗口,在觉醒过程中,大脑的多尺度组织在此之上发挥了认知功能。从像慢波活动这样的定型状态的表征开始了解这种转变是如何发生的,可能会掩盖大脑计算背后的丰富神经元动力学方法的出现。睡眠-觉醒过渡是一个被广泛研究的现象,但是仍在争论大脑状态如何发生变化。在这里,我们从麻醉大鼠的皮层内记录显示,当接近清醒时,睡眠样的节奏会消失,从而导致缓慢的上/下振荡和清醒型活动周期之间的交替。活动模式双稳态的这一阶段由皮质柱的基于平均场速率的模型捕获,其中在麻醉水平的瞬变范围内,出现了两个亚稳吸引子状态的共存。这两种状态之间的交替是由局部特征的持续竞争和支配建模柱的兴奋性和疲劳水平的外源性调制所引起的。我们的研究结果突出了一种大脑状态的转变,这不是连续的平稳变化,而是两种共存活动机制稳定性的渐进调节,从而在整个皮质柱上留下不同的指纹。在这种均值场模型的指导下,尖峰神经元网络被设计来重现过渡过程中显示的电生理变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号