首页> 外文会议>International ocean and polar engineering conference;International Society of Offshore and Polar Engineers >Computationally Efficient Simulation of Flexible Risers via Nonlinear Dynamic Substructures: Numerical and Experimental Validation
【24h】

Computationally Efficient Simulation of Flexible Risers via Nonlinear Dynamic Substructures: Numerical and Experimental Validation

机译:基于非线性动态子结构的柔性立管的计算高效仿真:数值和实验验证

获取原文

摘要

Accurate time-consistent computation of tensile armor wire stresses remains a major challenge in flexible riser fatigue life predictions and integrity management. Accuracy requires capturing the kinematics of the flexible’s helically contra-wound tensile armor layers and their interaction with the other metallic and thermo-plastic layers in a dynamic simulation. It is generally accepted that high fidelity 3D Finite Element Models (FEMs) can capture this complex kinematics and produce accurate stresses. However, dynamic simulation of the flexible’s detailed FEM for spans longer than a few meters requires prohibitively long computation times when utilizing commercial FE solvers. This has constrained the detailed FEM to a local model for static post-processing of maximum tension and curvature from regular wave global analyses. If more accurate representations of the dynamic environments (and associated fatigue life estimates) are desired, irregular wave tension and curvature time-histories are utilized as inputs to stress transfer functions generated from simplified FEM representations.Nonlinear Dynamic Substructuring (NDS) is designed for efficient computation of large-order nonlinear dynamic systems composed of FEMs. NDS is an extension of the framework of dynamic substructuring capturing all its computational efficiencies while operating in fully nonlinear mode. With NDS, the flexible’s detailed FEM is no longer relegated to short spans and static analysis. Instead, the detailed FEM can be synthesized to longer span local models and utilized in nonlinear dynamic simulations with long duration irregular wave tension/curvature inputs. Alternatively, the detailed FEM can be synthesized to global configurations where the simulations can capture the flexible’s complex kinematics at global geometries, boundary conditions, and dynamic environments. In either local or global NDS application, irregular wave armor wire stress time-histories are directly computed from the simulations and serve as an accurate basis for an enhanced fatigue assessment capturing a large array of stress ranges and associated cycles. This leads to high resolution fatigue spectra for reliable and accurate life estimates. This more accurate life estimate can play an important role in reducing over-conservatisms due to simplified models and idealized environments and allow for more accurate life extension assessments and more robust flexible riser integrity management programs.The validation of the NDS approach involved both numerical benchmarking and experimental validations. Numerical benchmarks of NDS simulations were executed against commercial FEA solvers on a pitch length 3D FEM, approximately 4 million degrees of freedom (DoFs) in size, for axial, torsion, internal pressure, external pressure, and bending cases. Experimental validation of NDS simulations involved comparisons of wire strains against an 8-pitch (4.65m) experiment involving multiple cycles of axial, torsional, and bending inputs. The 3D FEM simulated for the above experimental validation cases is approximately 32 million DoFs, making executions in commercial FEA infeasible whereas the NDS simulations executed in minutes. It is shown that NDS results are in very good agreement for both numerical and experimental cases.
机译:弹性铠装疲劳寿命预测和完整性管理中,精确的时间一致的张力铠装线应力计算仍然是一个重大挑战。准确性要求在动态模​​拟中捕获柔性螺旋缠绕的拉伸铠装层的运动学以及它们与其他金属和热塑性层的相互作用。人们普遍认为,高保真3D有限元模型(FEM)可以捕获这种复杂的运动学并产生准确的应力。但是,当使用商用有限元求解器时,对跨度超过数米的灵活的详细FEM进行动态仿真需要非常长的计算时间。这已将详细的FEM约束为局部模型,用于通过规则波全局分析对最大张力和曲率进行静态后处理。如果需要动态环境的更精确表示(以及相关的疲劳寿命估算),则可以将不规则的波浪张力和曲率时间历史用作简化FEM表示生成的应力传递函数的输入。 非线性动态子结构(NDS)设计用于有效计算由FEM组成的大阶非线性动力系统。 NDS是动态子结构框架的扩展,可在完全非线性模式下运行时捕获其所有计算效率。借助NDS,Flex的详细FEM不再局限于短跨度和静态分析。取而代之的是,可以将详细的FEM合成为更长跨度的局部模型,并用于长时间不规则波张力/曲率输入的非线性动态仿真中。另外,可以将详细的FEM合成为全局配置,其中的仿真可以捕获在全局几何形状,边界条件和动态环境下灵活的复杂运动学。在本地或全局NDS应用中,不规则波浪铠装线的应力时程都可以直接从模拟中计算得出,并可以作为增强疲劳评估的准确基础,该疲劳评估可以捕获大量应力范围和相关的周期。这会导致高分辨率疲劳光谱,从而实现可靠,准确的寿命估算。由于简化的模型和理想的环境,这种更准确的寿命估计可以在减少过度保守性方面发挥重要作用,并且可以进行更准确的寿命评估和更强大的立管完整性管理程序。实验验证。 NDS模拟的数值基准是针对螺距长度3D FEM,尺寸约为400万自由度(DoF),针对轴向,扭转,内部压力,外部压力和弯曲情况的商用FEA求解器执行的。 NDS模拟的实验验证涉及将线应变与8螺距(4.65m)实验进行比较,该实验涉及轴向,扭转和弯曲输入的多个循环。在上述实验验证案例中模拟的3D FEM大约为3200万自由度,这使得在商业FEA中执行不可行,而在几分钟内执行NDS模拟。结果表明,在数值和实验情况下,NDS结果都非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号