首页> 外文会议>International ocean and polar engineering conference >Computationally Efficient Simulation of Flexible Risers via Nonlinear Dynamic Substructures: Numerical and Experimental Validation
【24h】

Computationally Efficient Simulation of Flexible Risers via Nonlinear Dynamic Substructures: Numerical and Experimental Validation

机译:非线性动力子结构的柔性立管的计算上高效仿真:数值和实验验证

获取原文

摘要

Accurate time-consistent computation of tensile armor wire stresses remains a major challenge in flexible riser fatigue life predictions and integrity management. Accuracy requires capturing the kinematics of the flexible’s helically contra-wound tensile armor layers and their interaction with the other metallic and thermo-plastic layers in a dynamic simulation. It is generally accepted that high fidelity 3D Finite Element Models (FEMs) can capture this complex kinematics and produce accurate stresses. However, dynamic simulation of the flexible’s detailed FEM for spans longer than a few meters requires prohibitively long computation times when utilizing commercial FE solvers. This has constrained the detailed FEM to a local model for static post-processing of maximum tension and curvature from regular wave global analyses. If more accurate representations of the dynamic environments (and associated fatigue life estimates) are desired, irregular wave tension and curvature time-histories are utilized as inputs to stress transfer functions generated from simplified FEM representations. Nonlinear Dynamic Substructuring (NDS) is designed for efficient computation of large-order nonlinear dynamic systems composed of FEMs. NDS is an extension of the framework of dynamic substructuring capturing all its computational efficiencies while operating in fully nonlinear mode. With NDS, the flexible’s detailed FEM is no longer relegated to short spans and static analysis. Instead, the detailed FEM can be synthesized to longer span local models and utilized in nonlinear dynamic simulations with long duration irregular wave tension/curvature inputs. Alternatively, the detailed FEM can be synthesized to global configurations where the simulations can capture the flexible’s complex kinematics at global geometries, boundary conditions, and dynamic environments. In either local or global NDS application, irregular wave armor wire stress time-histories are directly computed from the simulations and serve as an accurate basis for an enhanced fatigue assessment capturing a large array of stress ranges and associated cycles. This leads to high resolution fatigue spectra for reliable and accurate life estimates. This more accurate life estimate can play an important role in reducing over-conservatisms due to simplified models and idealized environments and allow for more accurate life extension assessments and more robust flexible riser integrity management programs.The validation of the NDS approach involved both numerical benchmarking and experimental validations. Numerical benchmarks of NDS simulations were executed against commercial FEA solvers on a pitch length 3D FEM, approximately 4 million degrees of freedom (DoFs) in size, for axial, torsion, internal pressure, external pressure, and bending cases. Experimental validation of NDS simulations involved comparisons of wire strains against an 8-pitch (4.65m) experiment involving multiple cycles of axial, torsional, and bending inputs. The 3D FEM simulated for the above experimental validation cases is approximately 32 million DoFs, making executions in commercial FEA infeasible whereas the NDS simulations executed in minutes. It is shown that NDS results are in very good agreement for both numerical and experimental cases.
机译:准确的时间一致的拉伸装甲钢丝应力计算仍然是灵活的提升疲劳寿命预测和完整性管理中的主要挑战。准确性需要在动态模拟中捕获柔性螺旋对侧卷绕拉伸铠装层的运动学及其与其他金属和热塑料层的相互作用。通常接受高保真3D有限元模型(FEMS)可以捕获这种复杂的运动学并产生精确的应力。然而,灵活的微小有限元的动态模拟超过几米的跨度的跨越需要在利用商业FE求解器时妨碍计算时间。这使得详细的FEM限制到局部模型,用于静态张力和横向波动全局分析的最大张力和曲率的静态处理。如果需要更准确的动态环境(以及相关疲劳寿命估计),则不规则波浪张力和曲率时间历史被用作从简化的有限元表示产生的应力传递函数的输入。非线性动态子结构(NDS)设计用于高效计算由FEMS组成的大型非线性动态系统。 NDS是动态子结构框架的延伸,在全非线性模式下运行时捕获其所有计算效率的所有计算效率。使用NDS,灵活的详细有限元素不再被降低到短跨度和静态分析。相反,可以合成详细的FEM,以更长的跨度局部模型,并在长期不规则的波浪张力/曲率输入中用于非线性动态模拟。或者,详细的有限元件可以合成给全局配置,其中模拟可以在全球几何形状,边界条件和动态环境下捕获灵活的复杂运动学。在本地或全局NDS应用中,不规则波形铠装线应力时间历史是从模拟直接计算的,并用作增强型疲劳评估的准确依据捕获大量应力范围和相关循环。这导致高分辨率疲劳光谱,以实现可靠和准确的寿命估计。这种更准确的生命估计可以在减少由于简化的模型和理想化环境中减少过保守主义而且允许更准确的生命扩展评估和更强大的灵活性提升性诚信管理程序来发挥重要作用。NDS方法的验证涉及数值基准和实验验证。 NDS模拟的数值基准对俯仰长度3D FEM上的商业FEA溶剂进行,大小为约400万自由(DOF),用于轴向,扭转,内部压力,外压和弯曲案例。 NDS模拟的实验验证涉及线株对8间距(4.65米)实验的比较涉及多个轴向,扭转和弯曲输入的循环。模拟上述实验验证案例的3D PEM大约是3200万件DOF,在商业资源中的执行不可行,而NDS模拟在几分钟内执行。结果表明,NDS结果对于数值和实验案例非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号