首页> 外文会议>AIAA aviation forum;AIAA/ISSMO multidisciplinary analysis and optimization conference >Control Power Optimization using Artificial Intelligence for Forward Swept Wing and Hybrid Wing Body Aircraft
【24h】

Control Power Optimization using Artificial Intelligence for Forward Swept Wing and Hybrid Wing Body Aircraft

机译:前掠翼和混合翼机体的人工智能控制功率优化

获取原文

摘要

Many futuristic aircraft such as the Hybrid Wing Body have numerous control surfaces that can result in large hinge moments, high actuation power demands, and large actuator forces/moments. Also, there is no unique relationship between control inputs and the aircraft response; distinct sets of control surface deflections may result in the same aircraft response, but with large differences in actuation power. An Artificial Neural Network and Genetic Algorithm were used here for the control allocation optimization problem of a Hybrid Wing Body to minimize the Sum of Absolute Values of Hinge Moments by more than 14% for a 2.5-G pull-up maneuver. To test the versatility of the same optimization process for different aircraft configurations, the present paper also investigates its application on the Forward Swept Wing aircraft A method to improve the robustness of the process is also presented. Constraints on the load factor and longitudinal pitch rate were added to the optimization to preserve the trim constraints on the control deflections. Another method was developed using stability derivatives. This new method provided better results, and the computational time was reduced by two orders of magnitude. A hybrid scheme combining both methods was also developed to provide a real-time estimate of the optimum control deflection schedules to trim the airplane and minimize the actuation power for changing flight conditions (Mach number, altitude and load factor) in a pull-up maneuver.
机译:许多未来派飞机,例如混合翼机体,都有许多控制面,这些控制面可能会导致较大的铰链力矩,较高的致动功率需求以及较大的致动器力/力矩。同样,控制输入和飞机响应之间也不存在唯一的关系。不同的控制面偏转集可能导致相同的飞机响应,但致动力不同。此处将人工神经网络和遗传算法用于混合翼机体的控制分配优化问题,以将2.5G上拉动作的铰链力矩绝对值之和最小化14%以上。为了测试同一优化过程针对不同飞机配置的通用性,本文还研究了其在前掠翼飞机上的应用,并提出了一种提高过程鲁棒性的方法。对载荷因子和纵向俯仰率的约束已添加到优化中,以保留对控制挠度的调整约束。使用稳定性导数开发了另一种方法。这种新方法提供了更好的结果,并且计算时间减少了两个数量级。还开发了一种将两种方法结合起来的混合方案,以实时估计最佳控制挠度计划,以调整飞机并在上拉动作中最小化用于改变飞行条件(马赫数,高度和负载系数)的驱动力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号