首页> 外文会议>International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems >Aerospace-electronics reliability-assurance (AERA): Three-step prognostics-and-health-monitoring (PHM) modeling approach
【24h】

Aerospace-electronics reliability-assurance (AERA): Three-step prognostics-and-health-monitoring (PHM) modeling approach

机译:航空电子可靠性保证(AERA):三步预测和健康监控(PHM)建模方法

获取原文

摘要

When encountering a particular reliability problem at the design, fabrication, testing, or an operation stage of an electronics product's life, and considering the use of predictive modeling to assess the seriousness and possible consequences of its detected malfunction and likely failure, one has to choose whether a statistical, or a physics-of-failure-based, or a suitable combination of these two major predictive modeling tools should be employed to address the problem and to decide on how to proceed. An effective aerospace-electronics reliability-assurance (AERA) approach is suggested as a possible way to go in such a situation. In this approach the classical statistical Bayes formula (BF) is used at the first step as a technical diagnostics (TD) tool, with an objective to identify, on the probabilistic basis, the faulty (malfunctioning) device(s) from the obtained prognostics-and-health-monitoring (PHM) signals ("symptoms of faults"). The physics-of-failure-based Boltzmann-Arrhenius-Zhurkov's (BAZ) equation, a powerful, flexible and physically meaningful modeling tool suggested about five years ago can be employed at the second step with an objective is to assess the remaining useful life (RUL) of the malfunctioning device(s). If the predicted RUL is still long enough, no action might be needed, but if not, a corrective (restoration) action becomes necessary. It is shown in this connection how short/long the repair time should/could be, so that the availability of the equipment (the probability that it is sound and available to the user when needed) does not fall below the allowable level. In any event, after the first two steps of the AERA modeling effort are carried out, and the assessed probability of the product's continuing operation is found to be satisfactory, the device is put back into operation (testing). If failure nonetheless occurs, the third AERA step should be undertaken to update reliability. A well-known four-parametric statistical beta-dist- ibution (BD), in which the probability of failure is treated as a random variable, can be used at this step. The general AERA concept is illustrated by a detailed numerical example geared to an en-route flight mission. The approach can be used, however, also beyond the aerospace field in other vehicular technologies: maritime, automotive, railroad, etc.
机译:当在电子产品生命周期的设计,制造,测试或操作阶段遇到特定的可靠性问题,并考虑使用预测模型来评估其检测到的故障和可能的故障的严重性和可能的​​后果时,必须选择无论是基于统计的,基于故障物理的方法,还是这两种主要的预测建模工具的适当组合,都应该用来解决问题并决定如何进行。提出了一种有效的航空电子可靠性保证(AERA)方法,作为在这种情况下的一种可行方法。在这种方法中,第一步将经典的统计贝叶斯公式(BF)用作技术诊断(TD)工具,目的是在概率的基础上从获得的预后信息中识别出故障(故障)的设备。和健康监控(PHM)信号(“故障症状”)。基于失效物理的玻尔兹曼-阿伦尼乌斯-舒尔科夫(BAZ)方程是大约五年前提出的功能强大,灵活且具有物理意义的建模工具,可以在第二步中使用,其目的是评估剩余的使用寿命(故障设备的RUL)。如果预测的RUL仍然足够长,则可能不需要采取任何措施,但是如果不需要,则必须采取纠正(恢复)措施。在这种连接方式中,示出了维修时间应该/应该有多短/多长时间,以使得设备的可用性(声音良好并且在需要时可供用户使用的概率)不低于允许的水平。无论如何,在执行了AERA建模工作的前两个步骤,并且评估得出的产品继续运行的概率令人满意之后,该设备将重新投入运行(测试)。如果仍然发生故障,则应执行第三步AERA以更新可靠性。可以在此步骤中使用众所周知的四参数统计贝塔分布(BD),其中将故障概率视为随机变量。通过针对航路飞行任务的详细数字示例来说明一般的AERA概念。但是,该方法也可以在航空,航天,汽车,铁路等其他车辆技术的航空航天领域以外使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号