ocand short circ'/> J<inf>sc</inf>and V<inf>oc</inf>Optimization of Perovskite Solar Cell with Interface Defect Layer Using Taguchi Method
首页> 外文会议>IEEE International Conference on Semiconductor Electronics >Jscand VocOptimization of Perovskite Solar Cell with Interface Defect Layer Using Taguchi Method
【24h】

Jscand VocOptimization of Perovskite Solar Cell with Interface Defect Layer Using Taguchi Method

机译:J SC 和V OC 使用TAGUCHI方法进行界面缺陷层的PEROVSKITE太阳能电池的优化

获取原文

摘要

This paper is a study on Perovskite Solar Cell to optimize open circuit voltage, Vocand short circuit current density, Jscfor maximum efficiency at variation depth of interface defect layer (IDL). The Perovskite Solar Cell structure is simulated with combinations of IDL at 6nm, 8nm and 10nm of thickness sandwiches on both side of the solar cell absorber layer. Taguchi Method using L9 Orthogonal Array with Larger-The-Better (LTB) was used on finding most effective value on three material parameters: Cadmium Sulfide (CdS) as an electron transport layer (ETL), Perovskite absorber layer (CH3NH3Pbl3) and Copper Telluride (CuTe) as hole transport layer (HTL) in order to achieved best Voc and Jscvalues. The works was done by simulating a numerical model using Analysis Of Microelectronic and Photonic Structures (AMPS-ID) software. Using ANOVA, it was discovered the Perovskite absorber layer thickness is vital in affecting the increasing and decreasing on both Vocand Jsc. Taguchi predicted a 200nm of thickness for best Jscbut predicted 300nm for best Voc. The thickness of 200nm is selected for cost effectiveness. Taguchi method also predicted CdS and CuTe are considered slightly significant on improving the efficiency. Post Taguchi optimization approach shows Perovskite Solar Cell with CH3NH3Pbl3absorber layer has average power conversion efficiency of 20.7% on any combination of mentioned IDL thickness. With the aid of Taguchi method, a stable Perovskite Solar Cell efficiency with variation IDL thickness is achieved.
机译:本文是关于Perovskite太阳能电池的研究,以优化开路电压V. oc 和短路电流密度,j sc 为了在界面缺陷层(IDL)变化深度的最大效率。通过在太阳能电池吸收层的两侧的6nm,8nm和10nm的厚度夹层的26m,8nm和10nm的组合中模拟钙钛矿太阳能电池结构。使用L9正交阵列具有较大的(LTB)的Taguchi方法,用于在三种材料参数上找到最有效的值:硫化镉(CD)作为电子传输层(ETL),PeroVskite吸收层(CH 3 NH. 3 PBL. 3 )和铜碲(可爱)作为空穴传输层(HTL),以实现最佳VOC和J. sc 价值观。通过使用微电子和光子结构(AMPS-ID)软件的分析来模拟数值模型来完成作品。使用ANOVA,发现钙钛矿吸收层厚度对于影响v的增加和减少至关重要 oc 和J. sc 。 Taguchi预测了最好的200nm的厚度 sc 但是最佳v预测300nm oc 。选择200nm的厚度以用于成本效益。 Taguchi方法还预测CDS和可爱的CDS在提高效率方面被认为是略微意义的。 Post Taguchi优化方法显示佩洛夫斯基钛矿太阳能电池与CH 3 NH. 3 PBL. 3 吸收层的平均功率转换效率为20.7±%的任何组合的IDL厚度。借助Taguchi方法,实现了具有变化IDL厚度的稳定钙钛矿太阳能电池效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号