首页> 外文会议>IEEE International Conference on Semiconductor Electronics >Recent development in the growth of ZnO nanoparticles thin film by magnetron sputtering.
【24h】

Recent development in the growth of ZnO nanoparticles thin film by magnetron sputtering.

机译:磁控溅射钼纳米颗粒薄膜近期发展。

获取原文
获取外文期刊封面目录资料

摘要

Zinc oxide (ZnO) nanoparticles is an attractive candidate and gain attention for their novel properties and promising applications such as optoelectronic devices by virtue of their high surface to volume ratio and molecular absorption and desorption characteristics. Ultraviolet light emmiters, gas sensor (particularly for hydrogen) etc. are some of the potential applications of this wide direct band gap (Eg ∼ 3.37 eV) semiconductor. Currently, there are considerable amount of research attention on the growth of p-type ZnO thin film and nanoparticles. Thus, in this paper we will discuss recent development in the growth of p-type and ZnO thin film in nanoparticles by magnetron sputtering. There are several important parameters (e.g. RF power/DC voltage, working pressure, substrates temperature and target to substrates distance) that we have to consider in order to attain small grain size (≪ 100 nm). Grain size that are peculiarly small can be achieved by reducing kinetic energy of the sputtered material and lowering the growth rates either by increasing the working pressure or reducing RF power/ DC voltage. The temperature of the substrate is also believed to have some influence in slowing the kinetic energy of the sputtered atoms. For ZnO, n- type conductivity is easy to realize via excess zinc or with trivalent dopants such as Aluminium (Al), Gallium (Ga) or Indium (In) by substituting Zn2+ ions with Al3+ ions. Meanwhile, p-type doping has recently been achieved by doping with the group V elements. Most of the attempts have employed Nitrogen (N) as the acceptor to substitute Oxygen (O) by introducing either Nitrous Oxide (N2O), Nitric Oxide (NO), Ammonia (NH3) or Nitrogen (N2) gas. Other elements of group V are Phosphorus (P), Arsenic (As) and Antimony (Sb). Recently, Phosphorus oxide (P2O5) has been doped in ZnO thin film and post deposition of rapid thermal anne--aling (RTA) has been used to activate the dopants. Furthermore, a new method called codoping has been proposed to produce p-type ZnO, which was achieved using acceptors and reactive donors simultaneously to increase the solubility of Nitrogen in ZnO.
机译:氧化锌(ZnO)纳米颗粒是一种吸引人的候选者,并通过其高表面与体积比和分子吸收和解吸特性,对它们的新颖性和诸如光电器件等开发应用的有吸引力的候选者。紫外光Emmiters,气体传感器(特别是氢)等是该宽直接带隙的一些潜在应用(E G 〜3.37eV)半导体。目前,对P型ZnO薄膜和纳米颗粒的生长存在相当大的研究。因此,在本文中,我们将通过磁控溅射讨论纳米颗粒中P型和ZnO薄膜的生长的最新发展。我们需要考虑的几个重要参数(例如,RF功率/直流电压,工作压力,衬底温度和靶向基板距离),以便获得小粒度(«100nm)。可以通过减少溅射材料的动能并通过增加工作压力或减少RF功率/直流电压来降低生长速率来实现特殊小的晶粒尺寸。还认为基板的温度在减缓溅射原子的动能时具有一些影响。对于ZnO,通过用Zn 2 + / sup>离子与Al 2 + 离子易于通过多余的锌或诸如铝(Al),镓(Ga)或铟(In)的三价掺杂剂易于实现N型导电性。 sup> 3 + 离子。同时,最近通过掺杂v元素来实现p型掺杂。大多数尝试使用氮气(n)作为受体通过引入氧化亚氮(N 2-IM> O),一氧化氮(NO),氨(NH 3)来替代氧(O)替代氧(O)。 )或氮气(N 2 )气体。组V组的其他元素是磷(P),砷(AS)和锑(SB)。最近,磷氧化物(P 2 O 5 )在ZnO薄膜中掺杂,并追溯到快速热ANNE - Aling(RTA)激活掺杂剂。此外,已经提出了一种称为划分的新方法以产生p型ZnO,其使用受体和反应供体同时实现,以增加氮在ZnO中的溶解度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号