首页> 外文会议>World biomaterials congress >Novel self-gelling, injectable composites for bone regeneration based on gellan gum hydrogel and calcium and magnesium carbonate microparticles
【24h】

Novel self-gelling, injectable composites for bone regeneration based on gellan gum hydrogel and calcium and magnesium carbonate microparticles

机译:基于结冷胶水凝胶和碳酸钙和碳酸镁微粒的新型自胶,可注射复合材料,用于骨骼再生

获取原文

摘要

Introduction: Hydrogels are becoming more popular biomaterials for bone regeneration due to their injectability and the ease of incorporation of inorganic particles, e.g. calcium phosphate (CaP). Carbonates, e.g. CaCO3 have been successfully applied as bone regeneration materials and are more soluble than CaP. Carbonate particles could potentially serve as delivery vehicles for slow release of calcium (Ca) or magnesium (Mg) ions to crosslink anionic polysaccharides such as gellan gum (GG) to form homogeneous hydrogels. Carbonate microparticles containing Ca and/or Mg can be formed easily by mixing Ca2+ and Mg2+ and CO32- ions in varying concentrations. In this study, carbonate microparticles containing different amounts of Ca and Mg were added to a GG solution. Ca2+ and Mg2+ released from microparticles crosslinked GG to yield hydrogel-microparticle composites. The effect of Mg content on gelation, cytocompatibility and cell growth was studied. Methods: Ca2+/Mg2+ solutions of different Ca:Mg elemental ratios and CO32- solution were prepared. Particles were separated off by centrifugation, dried and autodaved and subjected to physiochemical characterization using FTIR, XRD, SEM, Raman, AAS and DLS. To generate self-gelling GG-microparticle composites, microparticles were resuspended in ddH2O and mixed with autodaved GG solution at 37° C. Final micropartide and GG concentrations were 2.5% and 0.66%, respectively (w/v). Gelation speed, micropartide distribution and cytocompatibility were investigated by rheometry, Micro-CT and MG-63 osteoblast-like cell culture in eluate from composites and directly on composites, respectively. Results: In the absence of Mg, calcite with some vatertie was formed. At low Mg content, magnesian calcite was formed. Increasing Mg content further increased general amorphicity. Microparticles of calcite, vaterite and magnesium caldte did not induce hydrogel formation. Addition of Mg-richer microparticles induced gelation within 25 min. Micropartide dispersion in hydrogels was homogeneous. All composites were cytocompatible. Cell growth after 7 d was highest on composites containing particles with an equimolar Ca:Mg ratio. Discussion: Increasing Mg content in the microparticles increased their amorphicity, in turn increasing their solubility, resulting in enhanced ion release and GG crosslinking and, in turn, hydrogel formation. Other studies have reported a beneficial effect of Mg as a component of CaP on cell proliferation, as observed in this study. Conclusion: Carbonate microparticles containing a sufficient amount of Mg induce GG hydrogel formation, resulting in injectable, cytocompatible hydrogel-micropartide composites.
机译:简介:水凝胶由于具有可注射性和易于掺入无机颗粒的优点,因此正变得越来越流行用于骨骼再生的生物材料。磷酸钙(CaP)。碳酸盐,例如CaCO3已成功地用作骨再生材料,并且比CaP更易溶。碳酸盐颗粒可以潜在地用作释放钙(Ca)或镁(Mg)离子以交联阴离子多糖(例如结冷胶(GG))以形成均质水凝胶的载体。通过混合不同浓度的Ca2 +和Mg2 +和CO32-离子,可以轻松地形成含Ca和/或Mg的碳酸盐微粒。在这项研究中,将包含不同量的Ca和Mg的碳酸盐微粒添加到GG溶液中。从微粒释放的Ca2 +和Mg2 +使GG交联,生成水凝胶-微粒复合材料。研究了镁含量对凝胶化,细胞相容性和细胞生长的影响。方法:制备了不同Ca:Mg元素比的Ca2 + / Mg2 +溶液和CO32-溶液。通过离心分离出颗粒,干燥并自动脱毛,并使用FTIR,XRD,SEM,Raman,AAS和DLS进行理化表征。为了产生自胶凝的GG-微粒复合物,将微粒重悬于ddH 2 O中并在37℃下与自动加入的GG溶液混合。最终微粒和GG的浓度分别为2.5%和0.66%(w / v)。通过流变仪,Micro-CT和MG-63成骨细胞样细胞培养物分别从复合材料和直接在复合材料上洗脱,研究了凝胶化速度,微粒分布和细胞相容性。结果:在不含镁的情况下,形成了具有一定挥发性的方解石。在低镁含量下,形成了镁方解石。镁含量的增加进一步提高了一般非晶态性。方解石,球ate石和镁钙碎石的微粒不会诱导水凝胶的形成。在25分钟内添加富含Mg的微粒引起凝胶化。微颗粒在水凝胶中的分散是均匀的。所有复合材料均具有细胞相容性。 7 d后的细胞生长在含有摩尔摩尔比为Ca:Mg的颗粒的复合材料中最高。讨论:微粒中Mg含量的增加会增加其非晶性,进而增加其溶解度,从而导致离子释放和GG交联增加,进而形成水凝胶。如本研究中所观察到的,其他研究报告了Mg作为CaP的成分对细胞增殖的有益作用。结论:含有足够量Mg的碳酸盐微粒会诱导GG水凝胶的形成,从而形成可注射的,细胞相容性的水凝胶-微颗粒复合物。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号