首页> 外文会议>World biomaterials congress >Control over the In vitro spreading, cell fate and proliferation of myoblast Cells in multicomponent self-assembled peptide hydrogels
【24h】

Control over the In vitro spreading, cell fate and proliferation of myoblast Cells in multicomponent self-assembled peptide hydrogels

机译:在多组分自组装肽水凝胶中控制成肌细胞的体外扩散,细胞命运和增殖

获取原文

摘要

Introduction Cell replacement therapy (CRT) has considerable potential for tissue repair, particularly for the regeneration of skeletal muscle in dystrophy or following trauma; This technology is rich in potential for improving the quality of life of a patient. When therapeutic cells transplanted into the damaged tissue manage to survive, they integrate within the host tissue and provide symptomatic relief. However, one of the major limitations has been the restricted availability of appropriately specified cells suitable for transplantation and unacceptably high rates of cell death following transplantation. The engineering of an environment structurally similar to the native extracellular matrix (ECM) is necessary in order to closely match the chemical and physical conditions within the extracellular niche. Recently, nanostructured hydrogels formed by Fluorenylmethyloxycarbonyl self-assembling pepticles (Fmoc-SAPs) have shown great potential for such biological applications due to their inherent biocompatibility, propensity to form higher order structures and rich chemical functionality. Importantly, it is possible to incorporate biologically relevant macromolecules to tune the morphological and mechanical properties of the target materials. Our research aims to creative a natural ECM mimic underpinned by self-assembled Fmoc-peptide scaffolds and through the incorporation of other, larger components that can be used for the growth and proliferation of myoblast cells. To investigate the combination of multiple components in Fmoc-SAP systems, we considered three important extracellular matrix (ECM) protein-derived pepticles; the fibronectin-derived arginine-glycine-aspartate (RGD), and two macromolecules to study in the work. Fucoidan is a sulphated, fucose-rich polysaccharide and it has been shown that fucoidan suppressed the expression of the myogenic regulatory factors and the myocyte enhancer factors as well as the modification of morphology during differentiation of myoblast cells; Versican is involved in developing muscle for cell adhesion, migration, and myogenesis. MATERIALS AND METHODS Solid phase peptide synthesis was used to generate the SAPs in a crystalline powder. We used and four groups of peptide hydrogel to determine the effect of the inclusion of macromolecules. (1) Fmoc-FRGDF alone; (2) co-assembly of Fmoc-FRGDFffucoidan; (3) co-assembly of Fmoc-FRGDF/versican conditioned media and (4) co-assembly of Fmoc-FRGDF/empty vector (pcDNA3.1) conditioned media used as a control of group. We then used a suite of mechanical, spectroscopic and microscopic techniques to characterise both systems to determine the outcome of the assembly process, and thier suitability for biological applications. C2C12 myoblast cells were used to determine the biological properties of the hydrogels. RESULTS Our results indicate that all approaches form stable hydrogels. Characterisation analyses determine that the underlying structure of the hydrogels is maintained and stable nanofibrous networks are formed for both homogeneous and heterogenous systems. Small-angle X-ray scattering (SAXS) was then used to detail important structural differences between the fibrils in the respective systems. Staining showed that from day 1 to day 3, cells had an area over 10,000 μm2 in the three systems except the Fmoc-FRGDF/fucoidan hydrogel, where smaller, still viable cells were observed. Moreover, Fmoc-FRGDF/Fucoidan group has the most single nuclear cells, while Fmoc-FRGDF/versican group have more multinuclear cells indicating a potential transition to a multinuclear myotubular morphology. CONCLUSIONS we will show that by incorporation of macromolecules into Fmoc-SAPs, hydrogels were formed with the potential to control myoblast cell fate. This work highlights the promising application of Fmoc-SAP hydrogels to produce a supply of cells for the treatment of muscle diseases such as Duchenne muscular dystrophy.
机译:引言细胞替代疗法(CRT)在组织修复方面具有相当大的潜力,尤其是在营养不良或创伤后骨骼肌的再生方面。该技术具有改善患者生活质量的潜力。当移植到受损组织中的治疗性细胞设法存活时,它们会整合到宿主组织中并提供症状缓解。然而,主要限制之一是限制了适用于移植的适当指定细胞的可用性,以及移植后细胞死亡的高速率令人无法接受。为了与细胞外生态位内的化学和物理条件紧密匹配,必须进行结构上与天然细胞外基质(ECM)相似的环境工程。近来,由芴基甲氧基羰基自组装消化器(Fmoc-SAPs)形成的纳米结构水凝胶由于其固有的生物相容性,易于形成更高阶结构和丰富的化学功能性而在此类生物学应用中显示出巨大潜力。重要的是,可以掺入生物学上相关的大分子以调节靶材料的形态和机械性能。我们的研究旨在通过自组装的Fmoc肽支架,并通过掺入其他可用于成肌细胞生长和增殖的更大成分,来创建天然的ECM模拟物。为了研究Fmoc-SAP系统中多个组件的组合,我们考虑了三个重要的细胞外基质(ECM)蛋白衍生的消化器;纤维连接蛋白衍生的精氨酸-甘氨酸-天冬氨酸盐(RGD)和两个大分子在工作中进行研究。岩藻依聚糖是一种硫酸化的,富含岩藻糖的多糖,已显示岩藻依聚糖能抑制成肌细胞分化过程中肌源性调节因子和心肌细胞增强因子的表达以及形态学的改变。 Versican参与肌肉发育以促进细胞粘附,迁移和肌发生。材料与方法固相肽合成用于生成结晶性粉末中的SAP。我们使用了四组肽水凝胶来确定包含大分子的效果。 (1)仅Fmoc-FRGDF; (2)Fmoc-FRGDFffucoidan的组装。 (3)Fmoc-FRGDF / versican条件培养基的共装配和(4)Fmoc-FRGDF /空载体(pcDNA3.1)条件培养基的共装配用作对照组。然后,我们使用了一套机械,光谱和显微技术来表征这两个系统,以确定组装过程的结果以及它们对生物学应用的适用性。 C2C12成肌细胞用于确定水凝胶的生物学特性。结果我们的结果表明,所有方法均能形成稳定的水凝胶。表征分析确定了水凝胶的基本结构得以维持,并且为均相和非均相系统均形成了稳定的纳米纤维网络。然后使用小角X射线散射(SAXS)来详细说明各个系统中原纤维之间的重要结构差异。染色显示从第1天到第3天,除了Fmoc-FRGDF / fucoidan水凝胶外,在三个系统中,细胞的面积均超过10,000μm2,在那里观察到较小的,仍能存活的细胞。此外,Fmoc-FRGDF /岩藻依聚糖组具有最多的单个核细胞,而Fmoc-FRGDF / versican组具有更多的多核细胞,表明可能转变为多核肌管形态。结论我们将表明,通过将大分子掺入Fmoc-SAP中,形成了具有控制成肌细胞命运的潜能的水凝胶。这项工作强调了Fmoc-SAP水凝胶在生产用于治疗肌肉疾病(例如杜氏肌营养不良症)的细胞中的应用前景广阔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号