首页> 外文会议>World biomaterials congress >External control over drug release using microgel- and SPION-laden nanocomposite hydrogels
【24h】

External control over drug release using microgel- and SPION-laden nanocomposite hydrogels

机译:使用载有微凝胶和SPION的纳米复合水凝胶对药物释放进行外部控制

获取原文

摘要

Introduction: Recently, several "smart" biomaterials that respond to specific stimuli have been studied to deliver triggered high/low or on/off doses of a drug locally inside the body, which has proven difficult to achieve in a non-invasive manner. In response, we have fabricated nanocomposite materials comprised of thermosensitive microgels and superparamagnetic iron oxide nanoparticles (SPIONs), which heat in response to an alternating magnetic field (AMF), entrapped within an injectable hydrogel matrix. Upon AMF application, the SPIONs will generate heat that is transferred to the thermosensitive microgels within the nanocomposite, causing them to deswell and open up free volume that encourages drug release (Fig. 1). Relative to earlier systems that included SPIONs within a thermosensitive matrix, in which AMF-controlled release was too small and shortlived for practical use, the free volume generated here by the microgels deswelling greatly increases both the magnitude and duration of drug pulses that can be achieved. Figure 1: Fabrication and release mechanism of nanocomposite hydrogels. Materials and Methods: SPIONs were produced by coprecipitation and peptized with poly(ethylene glycol). Microgels were fabricated using the conventional precipitation-emulsion approach via copolymerization of N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide. Bulk injectable hydrogels are formed via the reaction of hydrazide-functionalized pNIPAM and aldehyde-functionalized dextran. Nanocomposites were formed by mixing SPIONs, microgels, and the model drug (4 kDa FITC-dextran) with the injectable hydrogel precursor polymers and coextruding through a 2-barreled syringe (Fig. 1). A specialized AMF setup was used to determine the degree of control over release over multiple days. Results & Discussion: The microgels exhibited a 96% volume change within 37°C-43°C temperature range of interest, indicating significant potential for free volume generation upon thermal triggering. The nanocomposite hydrogels were confirmed to be mechanically strong, hydrolytically degradable, superparamagnetic, and minimally cytotoxic. We confirmed our proposed mechanism of release by showing that both the microgels and SPIONs need to be present to facilitate enhance released from this system. The microgels in thesecomposites allow for optimized control over release when heated from physiological temperatures (37°C) rather than room temperature (22°C), physiological temperature (37°C), and a hyperthermic temperature (43°C) (Fig. 2). Figure 2: Percentage increases in FITC-dextran release incubated at different baseline temperatures. Increasing the microgel volume fraction, optimizing the phase transition temperature of the microgel to achieve the maximum possible volume change upon relevant triggering temperature changes, and minimizing the swelling response of the bulk gel all enhance the magnitude and/or duration of pulsatile release that can be achieved, with up to 4-fold enhancements in release between the on/off state of pulsatile release achievable. Conclusion: Combining thermosensitive microgels with magnetic nanoparticles within an in situ-gellable hydrogel scaffold offers significant advantages in terms of facilitating triggered changes in drug release using a minimally-invasive device delivery (injection) and non-invasive triggering technology (AMF).
机译:简介:最近,已经研究了几种对特定刺激有反应的“智能”生物材料,以在体内局部递送触发的高/低或开/关剂量的药物,事实证明很难以无创方式实现。作为响应,我们制造了由热敏性微凝胶和超顺磁性氧化铁纳米颗粒(SPIONs)组成的纳米复合材料,这些材料会响应交变磁场(AMF)的作用而发热,并被包裹在可注射的水凝胶基质中。应用AMF时,SPIONs会产生热量,并将其传递到纳米复合材料内的热敏性微凝胶上,从而使其膨胀并释放出自由体积,从而促进药物释放(图1)。相对于将SPIONs包含在热敏基质中的早期系统(其中AMF控制释放太小且使用寿命短),微凝胶在此处产生的自由体积会发生溶胀,大大增加了可达到的药物脉冲强度和持续时间。图1:纳米复合水凝胶的制备和释放机理。材料和方法:SPIONs是通过共沉淀法制备的,并用聚乙二醇进行胶溶。使用常规的沉淀-乳液方法通过N-异丙基丙烯酰胺(NIPAM)和N-异丙基甲基丙烯酰胺的共聚制备微凝胶。大量可注射的水凝胶是通过酰肼官能化的pNIPAM和醛官能化的右旋糖酐的反应形成的。纳米复合材料是通过将SPIONs,微凝胶和模型药物(4 kDa FITC-葡聚糖)与可注射的水凝胶前体聚合物混合并通过2桶注射器共挤出而形成的(图1)。使用专门的AMF设置来确定几天内对释放的控制程度。结果与讨论:微凝胶在所关注的37°C-43°C温度范围内显示96%的体积变化,表明在热触发时产生自由体积的巨大潜力。纳米复合水凝胶被证实具有机械强度,可水解降解,超顺磁性和最小的细胞毒性。我们通过显示微凝胶和SPIONs都必须存在以促进从该系统中释放的增强,从而证实了我们提出的释放机制。这些复合物中的微凝胶可实现从生理温度(37°C)而非室温(22°C),生理温度(37°C)和高温(43°C)加热时的释放优化控制。 2)。图2:在不同的基线温度下孵育的FITC-葡聚糖释放的百分比增加。增加微凝胶的体积分数,优化微凝胶的相变温度,以在相关触发温度变化时实现最大可能的体积变化,并最小化本体凝胶的溶胀响应,所有这些都可以提高脉动释放的幅度和/或持续时间,这可以是在脉动释放的开/关状态之间的释放方面可实现多达4倍的增强。结论:将热敏性微凝胶与磁性纳米颗粒结合在可原位凝结的水凝胶支架中,在使用微创装置输送(注射)和无创触发技术(AMF)促进药物释放的触发变化方面具有显着优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号