首页> 外文会议>AIAA SciTech forum;AIAA Aerospace Sciences Meeting >Autonomic Subgrid-Scale Closure for Large Eddy Simulations
【24h】

Autonomic Subgrid-Scale Closure for Large Eddy Simulations

机译:用于大型涡流模拟的自主亚网格规模封闭

获取原文

摘要

Motivated by advances in PDE-constrained optimization, a fundamentally new autonomic closure for large eddy simulations (LES) is presented that implements an optimization formulation for the subgrid-scale stresses instead of using a predefined turbulence model. The autonomic closure approach is based on the most general dimensionally-consistent polynomial expansion of the local subgrid-scale stress tensor in terms of the resolved scale primitive variables and their products at all spatial locations and times. In so doing, the closure approach inherently addresses nonlinear, nonlocal, and nonequilibrium turbulence effects without introducing any tuning parameters. The expansion introduces a large set of coefficients that can be determined by solving an inverse problem that minimizes error relative to known subgrid stresses at a test filter scale. The resulting optimized coefficients are then projected to the LES scale by invoking scale similarity in the inertial range and applying appropriate renormalizations. This new closure approach avoids the need to specify a subgrid-scale model, and instead allows the optimization procedure to determine the best local relation between subgrid stresses and resolved-scale variables. Here we present the most general formulation of this new autonomic approach, and also present an inverse approach for determining the optimal coefficients. We then explore truncation, regularization, and sampling within the inverse formulation. Finally, we present results from a priori tests of the autonomic closure approach using data from direct numerical simulations of homogeneous isotropic and sheared turbulence. Even for the simplest 2nd order truncation of the fundamental polynomial expansion, substantial improvements over the Dynamic Smagorinsky model are found from this new autonomic closure approach.
机译:受PDE约束优化技术进步的推动,提出了一种用于大型涡流仿真(LES)的根本上新的自动闭合方法,该方法为子网格规模应力实现了优化公式,而不是使用预定义的湍流模型。自主闭合方法基于局部亚网格尺度应力张量的最一般的尺寸一致的多项式展开,该尺度展开是在所有空间位置和时间解析尺度原始变量及其乘积。这样,闭合方法固有地解决了非线性,非局部和非平衡湍流效应,而没有引入任何调整参数。扩展引入了一大组系数,这些系数可以通过解决一个反问题来确定,该反问题使相对于已知子网格应力的误差在测试过滤器范围内最小化。然后,通过在惯性范围内调用尺度相似度并应用适当的重新归一化,将所得的优化系数投影到LES尺度。这种新的闭合方法避免了指定子网格规模模型的需要,而是允许优化过程确定子网格应力和分解规模变量之间的最佳局部关系。在这里,我们介绍了这种新的自主方法的最一般的表述,并且还提出了确定最佳系数的逆方法。然后,我们在反公式中探索截断,正则化和采样。最后,我们使用对均质各向同性和剪切湍流的直接数值模拟得到的数据,给出了对自动闭合方法的先验测试的结果。即使是基本多项式展开的最简单的二阶截断,也可以从这种新的自动闭合方法中发现对Dynamic Smagorinsky模型的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号