首页> 外文会议>Annual Device Research Conference >Superior neuronal outgrowth guidance and rate enhancement using silicon nitride self-rolled-up membranes
【24h】

Superior neuronal outgrowth guidance and rate enhancement using silicon nitride self-rolled-up membranes

机译:使用氮化硅自卷膜实现卓越的神经元长出指导和速率增强

获取原文

摘要

An outstanding challenge for humanity is to continue to understand how our brain works and invent technology to restore neural circuit functionalities. Many neural interfaces used for neuron cell cultures are flat, open, rigid, and opaque, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a novel neural interface consisting of silicon nitride microtube arrays formed by a new nanotechnology platform that simply relies on strain-induced self-rolled-up membrane (S-RUM) mechanism [1]. We have found that these microtubes provide robust physical confinement and unprecedented guidance effect towards outgrowth of primary cortical neurons [2]. What is more surprising is that a dramatic increase (20x) of the growth rate inside the microtube compared to regions outside the microtubes has been observed [2]. The outgrowth of hippocampal neurons is also explored using identical platforms with the intent of integrating both networks on the same chip. The unique characteristics of these S-RUM microtubes that enabled the cell guidance and acceleration will be discussed in detail: (1) True 3D geometrical confinement: the perfect cylindrical geometry of the S-RUM microtubes with tunable diameters and ultra-thin walls, the same type of small and confined spaces neurons grow in vivo, provides conformal 3D adhesion tailored to different kinds of cells. (2) Electrostatic adhesion: the deposited SiN thin films are found to have a high density of trapped positive charges that naturally attract the axon towards the microtube opening. The ability of the microtube array to control the speed and direction of axonal extension provides a key element in arranging patterned neural networks that have both short and long range connections. (3) Optically transparent: having the ability to see through both the tube and the underlying substrate enabled direct observation of how cells transition from the flat regions- to different parts of the tube.
机译:对人类来说,一项艰巨的挑战是继续了解我们的大脑如何工作,并发明技术来恢复神经回路功能。用于神经元细胞培养的许多神经接口是平坦的,开放的,刚性的和不透明的,这对反映大脑的天然微环境以及与神经元的精确接合提出了挑战。在这里,我们介绍了一个由新的纳米技术平台形成的,由氮化硅微管阵列组成的新型神经接口,该平台仅依赖于应变诱导的自卷膜(S-RUM)机制[1]。我们发现,这些微管对原代皮层神经元的生长提供了强大的物理限制和空前的指导作用[2]。更令人惊讶的是,已经观察到与微管外部的区域相比,微管内部的生长速度显着提高(20倍)[2]。还使用相同的平台探索海马神经元的生长,目的是将两个网络都集成在同一芯片上。将详细讨论这些S-RUM微管实现细胞引导和加速的独特特征:(1)真正的3D几何限制:具有可调直径和超薄壁的S-RUM微管的理想圆柱几何形状,以及相同类型的狭小空间神经元在体内生长,可为不同类型的细胞量身定做的共形3D粘附。 (2)静电粘附:发现沉积的SiN薄膜具有高密度的捕获正电荷,这些电荷自然将轴突吸引到微管开口。微管阵列控制轴突延伸的速度和方向的能力为安排具有短距离和长距离连接的模式化神经网络提供了关键要素。 (3)光学透明的:能够透视管和下面的基底,可以直接观察细胞如何从平坦区域过渡到管的不同部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号