首页> 外文会议>SPWLA Annual Logging Symposium;Society of Petrophysicists and Well Log Analysts, inc >PATTERN RECOGNITION IN A DIGITAL AGE: A GAMEBOARD APPROACH TO DETERMINING PETROPHYSICAL PARAMETERS
【24h】

PATTERN RECOGNITION IN A DIGITAL AGE: A GAMEBOARD APPROACH TO DETERMINING PETROPHYSICAL PARAMETERS

机译:数字时代的图案识别:确定石油物理参数的游戏方法

获取原文

摘要

Graphical pattern recognition interpretive techniques have been part of petrophysics since quantitative interpretation began, as a way to quickly determine properties of interest with a minimum of calculations. When calculators and computers were introduced to petrophysics, the focus of the techniques changed from determining the quantities themselves to determining the parameters needed to calculate those quantities. As an example, Hingle plots (1959) and Pickett plots (1966, 1973), first used to quickly determine water saturation for a few points in a reservoir, can now instead be used to determine the parameters needed in Archie’s (1942) water saturation equation, so that the parameters and associated well log data can be used to calculate water saturation in much more detail and with more precision than before.An extension of those graphical techniques is shown here, where Hingle, Pickett, and Buckles (1965) plots (Morris and Biggs, 1967) are displayed simultaneously. In this “gameboard” display in Excel (©Microsoft), data is displayed on all the plots. The selection and modification of computational parameters is immediately reflected in all plots, leading to a more coherent prediction of those parameters than from the same plots used independently.Pickett plots, with bulk volume water lines added as shown by Greengold (1986), Hingle plots, with bulk volume water lines added as shown by Krygowski and Cluff (2012), and Buckles plots (using both linear and logarithmic scales) can predict in a common environment the following parameters: Matrix parameters to derive porosity from bulk density or sonic slowness, Archie porosity (cementation) exponent (m), saturation exponent (n), and water resistivity (Rw), and irreducible bulk volume water (BVWirr).The display uses those three plots not commonly displayed simultaneously, and has the plots linked so that changes made to the parameters determined from one plot are reflected in the other plots and the computations derived from those plots.By being able to change the values of any of the parameters while seeing how those changes impact the other parameters and the calculated porosity, water saturation, and bulk volume water, the user can quickly try different interpretive scenarios and determine which results best honor all the data at hand. Other information, such as from core measurements, can limit or set the values of some of the parameters while still allowing the values of other parameters to be determined in the context of that other data.
机译:自开始定量解释以来,图形模式识别解释技术一直是岩石物理学的一部分,它是一种通过最少的计算即可快速确定感兴趣的属性的方法。当计算器和计算机引入岩石物理学时,技术的重点从确定数量本身变为确定计算这些数量所需的参数。例如,Hingle图(1959)和Pickett图(1966,1973)最初用于快速确定水库中几个点的水饱和度,现在可以用来确定Archie(1942)水饱和度所需的参数。方程,因此参数和相关的测井数据可用于比以前更详细,更精确地计算含水饱和度。 此处显示了这些图形技术的扩展,其中同时显示了Hingle,Pickett和Buckles(1965)的图(Morris和Biggs,1967)。在Excel(©Microsoft)的“游戏板”显示中,所有图上均显示数据。计算参数的选择和修改会立即反映在所有图中,与从独立使用的相同图中得出的结果相比,这些参数的预测更加连贯。 Pickett图,如Greengold(1986)所示增加了体积水线,Hingle图,如Krygowski和Cluff(2012)所示增加了体积水线,以及Buckles图(使用线性和对数标度)都可以预测一个常见的环境有以下参数:从体积密度或声波慢度推导孔隙度的矩阵参数,阿奇孔隙度(水泥)指数(m),饱和指数(n)和水电阻率(Rw)以及不可还原体积水(BVWirr) 。 显示器使用这三个通常不同时显示的图,并且链接了这些图,以便对从一个图确定的参数所做的更改反映在其他图中,以及从这些图得出的计算结果。 通过能够更改任何参数的值,同时查看这些更改如何影响其他参数以及计算出的孔隙率,水饱和度和总体积水,用户可以快速尝试不同的解释方案,并确定哪种结果最适合所有现有数据。其他信息(例如来自核心测量的信息)可以限制或设置某些参数的值,同时仍然允许在其他数据的上下文中确定其他参数的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号