【24h】

Cellular Automaton Models for Collective Cell Behaviour

机译:集体细胞行为的细胞自动机模型

获取原文

摘要

Biological organisms are complex systems characterized by collective behaviour emerging out of the interaction of a large number of components (molecules and cells). In complex systems, even if the basic and local interactions are perfectly known, it is possible that the global (collective) behaviour can not be obviously extrapolated from the individual properties. Collective dynamics of migrating and interacting cell populations drive key processes in tissue formation and maintenance under normal and diseased conditions. For revealing the principles of tissue organization, it is fundamental to analyze the tissue-scale consequences of intercellular interaction. Only an understanding of the dynamics of collective effects at the molecular and cellular scale allows answering biological key questions such as: what enables ensembles of molecules to organize themselves into cells? How do ensembles of cells create tissues and whole organisms? What is different in diseased tissues as malignant tumors? Mathematical models for spatio-temporal pattern formation can contribute to answer these questions. The first models of spatio-temporal pattern formation focused on the dynamics of diffusible morphogen signals and have been formulated as partial differential equations (e.g.). In addition to diffusible molecular signals, the role of cells in morphogenesis can not be neglected. Living cells possess migration strategies that go beyond the merely random displacements of non-living molecules (diffusion). More and more evidence exists about how the self-organization of interacting and migrating cells contributes to the formation of order in a developing organism. Thereby, both the particular type of cell interaction and migration are crucial and suitable combinations allow for a wide range of patterns. The question is: What are appropriate mathematical models for analyzing organization principles of moving and interacting cells cells?
机译:生物有机体是复杂的系统,其特征在于大量成分(分子和细胞)之间相互作用产生的集体行为。在复杂的系统中,即使基本的和局部的相互作用是众所周知的,也有可能无法从单个属性中明显地推断出全局(集体)行为。迁移和相互作用的细胞群的集体动力学驱动正常和患病条件下组织形成和维持的关键过程。为了揭示组织组织的原理,分析细胞间相互作用的组织规模后果是至关重要的。只有了解分子和细胞尺度上集体效应的动力学,才能回答生物学的关键问题,例如:什么能使分子集合体将自身组织成细胞?细胞团如何产生组织和整个生物体?在患病组织中,恶性肿瘤有何不同?时空模式形成的数学模型可以帮助回答这些问题。时空模式形成的第一个模型着眼于可扩散的形态发生子信号的动力学,并已被表述为偏微分方程(例如)。除了可扩散的分子信号外,还不能忽略细胞在形态发生中的作用。活细胞的迁移策略超出了无生命分子(扩散)的随机迁移范围。越来越多的证据表明,相互作用和迁移细胞的自组织如何促进发育中的有机体秩序的形成。因此,细胞相互作用和迁移的特定类型都是至关重要的,并且合适的组合允许广泛的模式。问题是:什么是合适的数学模型来分析移动和相互作用细胞的组织原理?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号