首页> 外文会议>International conference on environmental degradation of materials in nuclear power systems-water reactors >IN-PROCESS ELECTROCHEMICAL CORROSION POTENTIAL MONITORING EXPERIENCE AT BOILING WATER REACTORS UTILIZING ON-LINE NOBLECHEM™ FOR MITIGATION OF INTERGRANULAR STRESS CORROSION CRACKING
【24h】

IN-PROCESS ELECTROCHEMICAL CORROSION POTENTIAL MONITORING EXPERIENCE AT BOILING WATER REACTORS UTILIZING ON-LINE NOBLECHEM™ FOR MITIGATION OF INTERGRANULAR STRESS CORROSION CRACKING

机译:利用NOBLECHEM™在线缓解沸腾反应器在过程中的电化学腐蚀电位,以消除晶间应力腐蚀裂纹

获取原文

摘要

Reduction of electrochemical corrosion potential (ECP) of Boiling Water Reactor (BWR) vessel and internals is essential for mitigating intergranular stress corrosion cracking (IGSCC). Hydrogen water chemistry in moderate concentrations (HWC-M) or at reduced injection rates with noble metals are IGSCC mitigation strategies employed by BWRs. In-vessel lower plenum ECP measurements have been obtained during operating conditions for BWRs utilizing normal water chemistry, HWC-M and NMCA. ECP monitoring for BWRs with OLNC has mainly been performed using probes mounted in external piping in contact with reactor coolant sample streams. The chemistry conditions and radiolysis effects at these locations are typically not as aggressive as in the lower vessel head region, where no direct in-vessel ECP measurements have previously been made during an OLNC injection. Brunswick 1 has utilized HWC-M as a mitigation strategy for protection of IGSCC since 1989. Two platinum ECP electrodes and a pre-oxidized stainless steel billet were installed in a modified local power range monitor (LPRM) during the 2014 refueling outage, and a HWC benchmark test was performed while operating under HWC-M. In August 2014, the station transitioned to On-Line NobleChem™ (OLNC). This paper will present the industry-first lower plenum in-vessel ECP measurements prior to and during the transition from HWC-M to OLNC. It will also summarize BWR experiences at plants utilizing OLNC with in-process ECP monitoring at reactor recirculation piping and bottom head drain line locations.
机译:减少沸水反应堆(BWR)容器和内部构件的电化学腐蚀电位(ECP)对于缓解晶间应力腐蚀开裂(IGSCC)至关重要。 BWR采用的IGSCC缓解策略是采用中等浓度(HWC-M)或以降低的注入速度注入贵金属的氢气水化学方法。利用正常的水化学,HWC-M和NMCA在BWR的运行条件下获得了船内较低的气室ECP测量值。使用OLNC进行的BWR的ECP监视主要是通过安装在与反应堆冷却剂样品流接触的外部管道中的探头进行的。在这些位置的化学条件和放射分解作用通常不如下部血管头部区域那样凶猛,下部血管头部区域以前在OLNC注射过程中未进行直接的体内ECP测量。自1989年以来,不伦瑞克1号就一直将HWC-M用作IGSCC保护的缓解策略。2014年加油停运期间,在改进的本地功率范围监控器(LPRM)中安装了两个铂金ECP电极和预氧化的不锈钢坯。在HWC-M下运行时进行了HWC基准测试。 2014年8月,该站转换为On-Line NobleChem™(OLNC)。本文将介绍从HWC-M过渡到OLNC之前和期间,业界首次进行的下腔内ECP测量。它还将总结BOL在使用OLNC的工厂中的经验,并在反应堆再循环管道和底部扬程排放管线位置进行过程中ECP监控。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号