首页> 外文会议>International conference on environmental degradation of materials in nuclear power systems-water reactors >IN-PROCESS ELECTROCHEMICAL CORROSION POTENTIAL MONITORING EXPERIENCE AT BOILING WATER REACTORS UTILIZING ON-LINE NOBLECHEM? FOR MITIGATION OF INTERGRANULAR STRESS CORROSION CRACKING
【24h】

IN-PROCESS ELECTROCHEMICAL CORROSION POTENTIAL MONITORING EXPERIENCE AT BOILING WATER REACTORS UTILIZING ON-LINE NOBLECHEM? FOR MITIGATION OF INTERGRANULAR STRESS CORROSION CRACKING

机译:利用在线NOBLECHEM的沸水反应器的过程中的电化学电化学腐蚀潜在监测经验?用于减轻晶间应激腐蚀裂纹

获取原文

摘要

Reduction of electrochemical corrosion potential (ECP) of Boiling Water Reactor (BWR) vessel and internals is essential for mitigating intergranular stress corrosion cracking (IGSCC). Hydrogen water chemistry in moderate concentrations (HWC-M) or at reduced injection rates with noble metals are IGSCC mitigation strategies employed by BWRs. In-vessel lower plenum ECP measurements have been obtained during operating conditions for BWRs utilizing normal water chemistry, HWC-M and NMCA. ECP monitoring for BWRs with OLNC has mainly been performed using probes mounted in external piping in contact with reactor coolant sample streams. The chemistry conditions and radiolysis effects at these locations are typically not as aggressive as in the lower vessel head region, where no direct in-vessel ECP measurements have previously been made during an OLNC injection. Brunswick 1 has utilized HWC-M as a mitigation strategy for protection of IGSCC since 1989. Two platinum ECP electrodes and a pre-oxidized stainless steel billet were installed in a modified local power range monitor (LPRM) during the 2014 refueling outage, and a HWC benchmark test was performed while operating under HWC-M. In August 2014, the station transitioned to On-Line NobleChem? (OLNC). This paper will present the industry-first lower plenum in-vessel ECP measurements prior to and during the transition from HWC-M to OLNC. It will also summarize BWR experiences at plants utilizing OLNC with in-process ECP monitoring at reactor recirculation piping and bottom head drain line locations.
机译:沸水反应器(BWR)容器和内部材料的电化学腐蚀电位(ECP)的降低对于减轻晶间应力腐蚀裂纹(IGSCC)是必不可少的。中等浓度(HWC-M)的氢水化学或减少注射率与贵金属的注射率是BWR雇用的IGSCC缓解策略。在使用正常水化学,HWC-M和NMCA的BWR的操作条件下,已经获得了血管内部气体ECP测量。使用OLNC的BWRS的ECP监测主要是使用安装在外部管道的探针与反应器冷却剂样品流接触。这些位置处的化学条件和放射性分解效果通常与下部血管头区域中的不具有侵蚀性,其中先前没有在OLNC注射过程中进行直接的内部ECP测量。 Brunswick 1利用了HWC-M作为自1989年以来保护IGSCC的缓解策略。在2014年加油中断期间,两个铂金电极和预氧化的不锈钢坯料安装在改进的本地功率范围监测器(LPRM)中,在HWC-M下运行时执行HWC基准测试。 2014年8月,车站转型至线上的Noblemem? (olnc)。本文将在从HWC-M转变为OLNC之前和在过渡期间的行业 - 首先降低血管内ECP测量。它还将总结在植物的BWR经验利用OLNC在反应堆再循环管道和底部漏极排水管位置处进行过程中的ECP监测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号