首页> 外文会议>Conference on laser applications in microelectronic and optoelectronic manufacturing >Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips
【24h】

Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips

机译:飞秒激光技术与瓶装集成,制造出真正的3D生物芯片

获取原文

摘要

We propose herein the "ship-in-a-bottle" integration of three-dimensional (3D) polymeric sinusoidal ridges inside photosensitive glass microfluidic channel by a hybrid subtractive - additive femtosecond laser processing method. It consists of Femtosecond Laser Assisted Wet Etching (FLAE) of a photosensitive Foturan glass followed by Two-Photon Polymerization (TPP) of a SU-8 negative epoxy-resin. Both subtractive and additive processes are carried out using the same set-up with the change of laser focusing objective only. A 522 nm wavelength of the second harmonic generation from an amplified femtosecond Yb-fiber laser (FCPA μJewel D-400, IMRA America, 1045 nm; pulse width 360 fs, repetition rate 200 kHz) was employed for irradiation. The new method allows lowering the size limit of 3D objects created inside channels to smaller details down to the dimensions of a cell, and improve the structure stability. Sinusoidal periodic patterns and ridges are of great use as base scaffolds for building up new structures on their top or for modulating cell migration, guidance and orientation while created interspaces can be exploited for microfluidic applications. The glass microchannel offers robustness and appropriate dynamic flow conditions for cellular studies while the integrated patterns are reducing the size of structure to the level of cells responsiveness. Taking advantage of the ability to directly fabricate 3D complex shapes, both glass channels and polymeric integrated patterns enable us to 3D spatially design biochips for specific applications.
机译:我们在此提出通过混合减法-飞秒飞秒激光加工方法在光敏玻璃微流体通道内对三维(3D)聚合物正弦脊进行“瓶装运输”集成。它由光敏的Foturan玻璃的飞秒激光辅助湿法蚀刻(FLAE),然后是SU-8负型环氧树脂的双光子聚合(TPP)组成。减法和加法过程都使用相同的设置进行,只是改变了激光聚焦物镜。使用来自放大的飞秒Yb光纤激光器(FCPAμJewelD-400,IMRA America,1045 nm;脉冲宽度360 fs,重复频率200 kHz)产生的522 nm波长的二次辐射。新方法可以降低在通道内部创建的3D对象的尺寸限制,从而将较小的细节降低到像元的尺寸,并提高结构稳定性。正弦周期模式和脊线非常有用,可作为基础支架在其顶部建立新结构或调节细胞迁移,引导和方向,同时可将产生的间隙用于微流体应用。玻璃微通道为细胞研究提供了坚固性和适当的动态流动条件,同时集成的模式正在将结构尺寸减小到细胞反应性水平。利用直接制造3D复杂形状的能力,玻璃通道和聚合物集成图案均可使我们能够针对特定应用进行3D空间设计生物芯片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号