首页> 外文会议>International Symposium on Solid Oxide Fuel Cells >Role of Lattice Strain vs. Solid Solution Doping on Atomistic Near Order and Oxygen Ionic Transport for Ceria-based Micro-Energy Conversion Membranes
【24h】

Role of Lattice Strain vs. Solid Solution Doping on Atomistic Near Order and Oxygen Ionic Transport for Ceria-based Micro-Energy Conversion Membranes

机译:晶格应变与固溶体掺杂在基于二氧化铈的微能转化膜原子近序和氧离子迁移中的作用

获取原文

摘要

Increasing the efficiencies for micro energy conversion devices based on oxygen ion conducting solid state membranes are the prerequisite toward next generations' electrolysers and fuel cells. Here, gadolinium-doped ceria free-standing thin films are a key element i.e. for micro solid oxide fuel cells (μSOFCs). In this work, we investigate the different factors which influence ionic transport for doped ceria films with various strain states. Despite the knowledge it remains unclear what implicates more the fast oxygen ionic conductivity for ceria-based thin film membranes: How strongly does doping vs. lattice strain affect the oxygen ionic conduction and directions in free-standing film membranes for micro-energy convenors? For this, a model experiment is reported for which undoped and 20 mol%-doped ceria-based films deposited as substrate-supported and free-standing are prepared with Pt microelectrodes. We unequivocally show, that the activation energy of ionic transport is substantially increased by opposing a compressive in-plane strain on the free standing membranes (up to +Δ0.14 eV) when compared to the flat films independent on the doping level tested. The effect of lattice straining to alter the oxygen ionic transfer is more significant than the variations due to changes in the solid solution series of up to 20 mol% gadolinia in ceria for the membrane structures. Analysis of Raman shift on the F_(2g) cationic-oxygen anionic vibration modes of pure and doped ceria confirmed a compressive strain introduced by doping. The interaction between compressive strain, dopant concentration and activation energy suggests new insights on the optimization of the micro-energy convertors.
机译:提高基于氧离子传导固态膜的微能量转换装置的效率是下一代电解槽和燃料电池的前提。在此,ado掺杂的二氧化铈自支撑薄膜是关键元素,即用于微固体氧化物燃料电池(μSOFC)。在这项工作中,我们研究了影响具有各种应变状态的二氧化铈薄膜的离子迁移的不同因素。尽管有相关知识,但仍不清楚什么进一步暗示了基于二氧化铈的薄膜的快速氧离子传导性:掺杂与晶格应变对微能召集者的自立膜膜中的氧离子传导和方向有多大影响?为此,报道了一个模型实验,其中使用Pt微电极制备了无掺杂和20 mol%掺杂的二氧化铈基薄膜,这些薄膜沉积为衬底支撑和自支撑。我们明确地表明,与平坦薄膜相比,与独立于测试掺杂水平的薄膜相比,通过对抗自由站立膜上的压缩平面内应变(高达+Δ0.14eV),离子传输的活化能大大提高。晶格应变改变氧离子转移的影响比由于膜结构中二氧化铈中高达20 mol%氧化ado的固溶系列变化而引起的变化更为显着。对纯和掺杂的二氧化铈的F_(2g)阳离子-氧阴离子振动模式进行拉曼位移分析,证实了掺杂引起的压缩应变。压缩应变,掺杂剂浓度和活化能之间的相互作用为微能转化器的优化提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号