首页> 外文会议>International conference on mechanics and physics of creep, shrinkage, and durability of concrete and concrete structures >Interfacial Micromechanics Assessment of Rheological Chain Models and Their Application to Early-age Creep of Concrete
【24h】

Interfacial Micromechanics Assessment of Rheological Chain Models and Their Application to Early-age Creep of Concrete

机译:流变链模型的界面微力学评估及其在混凝土早期蠕变中的应用

获取原文

摘要

Nanoindentation testing suggests that creep of hydration products is the microscopic reason for macroscopic creep of cementitious materials. This is supported by a multiscale creep model which explains aging creep of young concretes as the consequence of universal creep of hydration products (Scheiner and Hellmich, 2009), whereby the latter is described with a rheological model consisting of linear springs and dashpots. We here extend the investigation of the origin of creep of cementitious materials further down to the nanoscale of hydration products, where we envision solid matter sliding (upon loading) along interfaces which are filled with lubricating thin layers of adsorbed water, i.e. water in a "glassy", "liquid crystal" state. As for the viscous behavior of the interfaces, we follow (Shahidi et al., 2014) and consider that the shear traction acting on an adsorbed water layer is proportional to the shear dislocation rate of the interface, with an interface viscosity as the proportionality constant. Our analysis starts from corresponding anisotropic creep and relaxation tensors of matrix-interface composites containing parallel interfaces (Shahidi et al., 2014). Considering that hydration products contain interfaces oriented isotropically in all space directions, we here compute complete spatial averages of parallel interface-related anisotropic creep and relaxation tensors, in order to derive isotropic creep and relaxation tensor bounds. Comparing them with creep and relaxation functions of the aforementioned rheological model for universal creep of hydration products allows for identification (ⅰ) of the interface density and (ⅱ) of the product of interface size and viscosity. Based on the Reuss-type creep tensor bound, we obtain, interesting quantitative insight into microstructural features of hydration products.
机译:纳米压痕测试表明,水合产物的蠕变是胶凝材料宏观蠕变的微观原因。这由多尺度蠕变模型支持,该模型解释了由于水合产品普遍蠕变而导致的年轻混凝土的老化蠕变(Scheiner和Hellmich,2009年),其中后者由包含线性弹簧和阻尼器的流变模型描述。我们在这里将胶结材料蠕变的起源的研究范围进一步扩展到水合产品的纳米级,在此我们设想固体物质沿填充有润滑薄层吸附水(即“水”中的水)的界面滑动(加载时)。玻璃态”,“液晶”状态。关于界面的粘性行为,我们遵循(Shahidi等人,2014),并认为作用在吸附水层上的剪切力与界面的剪切位错率成比例,界面粘度作为比例常数。我们的分析从包含平行界面的矩阵界面复合材料的各向异性各向异性张量和张量开始(Shahidi等人,2014)。考虑到水合产物包含在所有空间方向上各向同性取向的界面,我们在这里计算平行界面相关的各向异性蠕变和张量张量的完整空间平均值,以得出各向同性蠕变和张量张量边界。将它们与上述流变模型的水化产物通用蠕变的蠕变和松弛函数进行比较,可以识别(ⅰ)界面密度和(ⅱ)界面尺寸和粘度的乘积。基于Reuss型蠕变张量界,我们获得了有关水合产物微观结构特征的有趣定量见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号