首页> 外文会议>International conference on mechanics and physics of creep, shrinkage, and durability of concrete and concrete structures >Interfacial Micromechanics Assessment of Rheological Chain Models and Their Application to Early-age Creep of Concrete
【24h】

Interfacial Micromechanics Assessment of Rheological Chain Models and Their Application to Early-age Creep of Concrete

机译:流变链模型的界面微机械评估及其在初期混凝土蠕变中的应用

获取原文

摘要

Nanoindentation testing suggests that creep of hydration products is the microscopic reason for macroscopic creep of cementitious materials. This is supported by a multiscale creep model which explains aging creep of young concretes as the consequence of universal creep of hydration products (Scheiner and Hellmich, 2009), whereby the latter is described with a rheological model consisting of linear springs and dashpots. We here extend the investigation of the origin of creep of cementitious materials further down to the nanoscale of hydration products, where we envision solid matter sliding (upon loading) along interfaces which are filled with lubricating thin layers of adsorbed water, i.e. water in a "glassy", "liquid crystal" state. As for the viscous behavior of the interfaces, we follow (Shahidi et al., 2014) and consider that the shear traction acting on an adsorbed water layer is proportional to the shear dislocation rate of the interface, with an interface viscosity as the proportionality constant. Our analysis starts from corresponding anisotropic creep and relaxation tensors of matrix-interface composites containing parallel interfaces (Shahidi et al., 2014). Considering that hydration products contain interfaces oriented isotropically in all space directions, we here compute complete spatial averages of parallel interface-related anisotropic creep and relaxation tensors, in order to derive isotropic creep and relaxation tensor bounds. Comparing them with creep and relaxation functions of the aforementioned rheological model for universal creep of hydration products allows for identification (ⅰ) of the interface density and (ⅱ) of the product of interface size and viscosity. Based on the Reuss-type creep tensor bound, we obtain, interesting quantitative insight into microstructural features of hydration products.
机译:纳米压痕测试表明,水化产物蠕变为胶凝材料的宏观蠕变微观原因。这是通过这解释了老化年轻混凝土的蠕变作为水化产物(沙伊纳和Hellmich,2009),由此,后者与由线性弹簧和阻尼器的流变模型描述普遍蠕变的结果多尺度蠕变模型支持。在这里,我们延长胶凝材料的蠕变起源的调查进一步向下的水化产物,在这里我们设想固体物质滑动(在加载)沿界面的纳米填充有润滑吸附的水,即水的薄层在“玻璃状”,‘液晶’状态。作为接口的粘性行为,我们遵循(沙希迪等人,2014),并认为作用的吸附的水层上的剪切牵引正比于接口的剪切位错率,与接口粘度为比例常数。我们的分析从相应的含并行接口矩阵接口复合材料的各向异性蠕变和松弛张量开始(沙希迪等人,2014)。考虑到水化产物包含在所有空间方向各向同性面向接口,我们的并行接口相关的各向异性蠕变和松弛张量计算在这里完整的空间平均值,以便得出各向同性的蠕变和松弛张量边界。他们提供的水化产物普遍蠕变上述流变模型的蠕变和松弛功能比较允许接口大小和粘度的产品的界面密度的识别(ⅰ)和(ⅱ)。基于约束罗伊斯型蠕变张量,我们得到的,有趣的定量洞察的水化产物显微结构特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号