首页> 外文会议>World foundry congress >Experimental Verification of Progressive Method for Porosity Prediction
【24h】

Experimental Verification of Progressive Method for Porosity Prediction

机译:递进孔隙率预测方法的实验验证

获取原文

摘要

The final integrity of a casting is greatly influenced by the presence of porosity. Progressive way to predict presence of porosity is the use of various simulation softwares. In most of these programs today, porosity prediction is limited to macro-shrinkage porosity which corresponds to the contraction of the metal during solidification. This approach does not take into account for gas and interdendritic shrinkage porosity, and yet, these types of porosity are the main factors affecting mechanical properties of cast aluminium alloys, in particular fatigue resistance and toughness. The main aim of submited article is to verify possibilities of this promising and complex method to predict porosity. Various factors will be discussed: melt temperature, mold temperature, mold material and also used alloy (in next phase of experiments also inoculation and modification). A calculation of advanced porosity prediction was performed for an aluminium alloys with help of advanced porosity module included in ProCAST sotware. This calculation takes into account all basic phenomena, which are at the origin of micro and macro porosity. For porosity analysis was used specific casting mold - Sanduhrprobe. Shape of mold is designed in unique way, so in solidification phase is induced three types of voids, at a free surface, the level of liquid decreases as solidification proceeds (piping), within closed liquid pockets (hot spots), a macropore surrounded also by microporosity will be present. Material used in experiment is not loaded from software database, because results could be distorted, to achieve precise results, we used thermal analysis to get accurate data about particular used alloys. Important solidification events, which affects porosity formation, such as recalescence and nucleation undercooling temperature, coherence point and rigidity point have been evaluated using cooling curve and its first derivate curve obtained from thermal analysis of a sample.
机译:铸件的最终完整性在很大程度上受孔隙度的影响。预测孔隙度的渐进方式是使用各种模拟软件。在当今的大多数程序中,孔隙率预测仅限于宏观收缩孔隙率,它对应于凝固过程中金属的收缩。该方法没有考虑气体和树突间收缩孔隙率,但是,这些类型的孔隙率是影响铸造铝合金机械性能(尤其是抗疲劳性和韧性)的主要因素。提交文章的主要目的是验证这种有前途且复杂的方法来预测孔隙率的可能性。将讨论各种因素:熔体温度,模具温度,模具材料以及所用合金(在下一阶段的实验中也进行接种和改性)。借助ProCAST软件中包含的高级孔隙率模块,对铝合金进行了高级孔隙率预测的计算。该计算考虑了所有基本现象,这些现象是微观和宏观孔隙的起源。对于孔隙率分析,使用特定的铸模-Sanduhrprobe。模具的形状采用独特的方式设计,因此在凝固阶段会诱发三种类型的空隙,在自由表面上,随着凝固的进行(管道),液体的液位会降低;在封闭的液体囊(热点)内,大孔也被包围通过微孔将存在。实验中使用的材料未从软件数据库中加载,因为结果可能会失真,为获得准确的结果,我们使用热分析来获得有关特定使用过的合金的准确数据。已使用冷却曲线及其从样品的热分析获得的一阶导数曲线评估了影响孔隙形成的重要凝固事件,例如再冷却和成核过冷温度,相干点和刚度点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号