首页> 外文会议>American Helicopter Society International annual forum >Full-scale Experimental Validation of Dynamic, Centrifugally Powered, Pneumatic Actuators for Active Rotor Blade Surfaces
【24h】

Full-scale Experimental Validation of Dynamic, Centrifugally Powered, Pneumatic Actuators for Active Rotor Blade Surfaces

机译:主动转子叶片表面动态,离心动力气动执行机构的全面实验验证

获取原文

摘要

A novel actuation approach for active rotor blade surfaces is introduced. The approach utilizes the rotor centripetal acceleration to generate an internal, on-blade pressure differential that can be used for active surface actuation. The advantages of this approach include high force and displacement output with extremely little added blade weight and low electrical power requirements. An analysis of the available spanwise pressure differential is presented that has been previously experimentally validated in a full-scale whirl test of a K-MAX rotor. The development of a scaled pneumatic actuator designed to fit within a K-MAX rotor blade is then detailed. The actuator consists of miniature, three-way piezoelectric valves that control air flow into and out of actuating diaphragms. The experimental results of a full-scale whirl test are then reported. The rotational actuator is capable of following various multi-frequency command signals with frequency components up to 30 Hz, and the results suggest that actuator performance and response time could be improved with increased valve flow. A state space model of a pneumatic actuator and trailing edge flap system is then developed that captures the instantaneous air flow through the valves into the diaphragms, as well as the flap dynamics. Upon model validation using the experimental whirl test results, an analytical feasibility study is then conducted to determine the valve and diaphragm geometry requirements to power a trailing edge for both higher harmonic vibration control and primary flight control for a light-medium sized helicopter. This study assumes that the actuator must provide at least ±5° at 30 Hz for vibration control and ±20° at 6 Hz for primary control. The results of this study suggest that the actuation approach can provide sufficient torque and angular displacement at the required bandwidths provided there is adequate valve performance and a minimum pneumatic supply line diameter. Using the Darcy-Weisbach formula for flow through pipes, a minimum diameter for the supply line diameter to maintain a sufficient pressure differential is estimated given the volumetric air flow through the actuator. The effects of forward flight and varying altitude on the available pressure differential is investigated, where the azimuthal RMS pressure differential is little changed in forward flight versus hover and the available pressure differential decreases nearly in proportion to the decreasing air density with altitude. Because aerodynamic forces on active surfaces also decrease in proportion to air density, a pneumatic actuator can therefore be designed to be operable in all flight regimes. Finally, a next generation actuator design is presented that will enable high frequency, high displacement actuator performance.
机译:介绍了一种用于主动转子叶片表面的新型致动方法。该方法利用转子的向心加速度来产生内部的叶片上压差,该压差可用于主动表面致动。这种方法的优点包括高的力和位移输出,而极小的叶片重量增加和较低的电功率要求。提出了对可用的翼展方向压差的分析,该分析先前已在K-MAX转子的全面旋转测试中进行了实验验证。然后详细介绍了设计用于安装在K-MAX转子叶片中的比例缩放气动执行器的开发。该执行器由微型三通压电阀组成,可控制空气流入和流出执行机构膜片。然后报告了全面旋转测试的实验结果。旋转执行器能够跟踪频率分量高达30 Hz的各种多频率指令信号,结果表明,随着阀流量的增加,执行器的性能和响应时间将得到改善。然后开发了气动执行器和后缘襟翼系统的状态空间模型,该模型捕获通过阀进入隔膜的瞬时空气流以及襟翼动力学。使用实验涡流测试结果对模型进行验证后,将进行分析可行性研究,以确定对高中频直升机的高次谐波振动控制和一次飞行控制的后缘提供动力的气门和隔板几何形状要求。本研究假设执行器必须在30 Hz时提供至少±5°的振动控制,在6 Hz时提供至少20°的初级控制。这项研究的结果表明,只要阀门性能足够,气动供应管线的直径最小,那么驱动方法就可以在所需的带宽上提供足够的扭矩和角位移。使用达西-魏斯巴赫(Darcy-Weisbach)公式计算通过管道的流量,考虑到通过执行机构的空气体积流量,可以估算出供气管道直径的最小直径,以保持足够的压差。研究了前向飞行和海拔高度变化对可用压差的影响,其中前向飞行与悬停时,方位角RMS压差变化不大,而可用压力差几乎与空气密度随高度下降而成比例地减小。因为作用表面上的空气动力也与空气密度成比例地减小,因此可以将气动致动器设计为在所有飞行状态下均可操作。最后,介绍了下一代执行器设计,该设计将实现高频,高位移执行器性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号