首页> 外文学位 >Numerical simulation and prediction of loads in marine current turbine full-scale rotor blades.
【24h】

Numerical simulation and prediction of loads in marine current turbine full-scale rotor blades.

机译:船用电流涡轮全尺寸转子叶片载荷的数值模拟和预测。

获取原文
获取原文并翻译 | 示例

摘要

Marine current turbines are submerged structures and subjected to loading conditions from both the currents and wave effects. The associated phenomena posed significant challenge to the analyses of the loading response of the rotor blades and practical limitations in terms of device location and operational envelopes. The effect of waves on marine current turbines can contribute to the change of flow field and pressure field around the rotor and hence changes the fluid forces on the rotor. However, the effect of the waves on the rotor depends on the magnitude and direction of flow velocity that is induced by the waves. An analysis is presented for predicting the torque, thrust, and bending moments resulting from the wave-current interactions at the root of rotor blades in a horizontal axis marine current turbine using the blade element-momentum (BEM) theory combined with linear wave theory. Parametric studies are carried out to better understand the influence of important parameters, which include wave height, wave frequency, and tip-speed ratio on the performance of the rotor. The periodic loading on the blade due to the steady spatial variation of current speeds over the rotor swept area is determined by a limited number of parameters, including Reynolds number, lift and drag coefficients, thrust and torque coefficients, and power coefficient. The results established that the BEM theory combined with linear wave theory can be used to analyze the wave-current interactions in full-scale marine current turbine. The power and thrust coefficients can be analyzed effectively using the numerical BEM theory in conjunction with corrections to the tip loss coefficient and 3D effects. It has been found both thrust and torque increase as the current speed increases, and in longer waves the torque is relatively sensitive to the variation of wave height. Both in-plane and out-of-plane bending moments fluctuate significantly and can be predicted by linear wave theory with blade element-momentum theory.
机译:船用水轮机是浸入水中的结构,并受电流和波浪效应的影响。相关的现象对转子叶片的负载响应的分析和在设备位置和操作范围方面的实际限制提出了极大的挑战。波浪对船用水轮机的影响可能有助于改变转子周围的流场和压力场,从而改变作用在转子上的流体力。但是,波浪对转子的影响取决于波浪引起的流速的大小和方向。提出了一种分析方法,该方法使用叶片要素动量(BEM)理论与线性波动理论相结合来预测水平轴船用水轮机转子叶片根部的波浪-电流相互作用所产生的转矩,推力和弯矩。进行参数研究是为了更好地理解重要参数的影响,这些重要参数包括波高,波频率和叶尖速比对转子性能的影响。由于转子扫掠区域上当前速度的稳定空间变化,叶片上的周期性负载由有限数量的参数确定,这些参数包括雷诺数,升力和阻力系数,推力和扭矩系数以及功率系数。结果表明,BEM理论与线性波理论相结合可用于分析全尺寸船用水轮机的波流相互作用。可以使用数值BEM理论以及对叶尖损耗系数和3D效应的校正,有效地分析功率和推力系数。已经发现,推力和扭矩都随着当前速度的增加而增加,并且在更长的波浪中,扭矩对波浪高度的变化相对敏感。平面内和平面外的弯矩都会有很大的波动,并且可以通过线性波动理论和叶片单元动量理论进行预测。

著录项

  • 作者

    Senat, Junior.;

  • 作者单位

    Florida Atlantic University.;

  • 授予单位 Florida Atlantic University.;
  • 学科 Engineering Civil.;Engineering Marine and Ocean.
  • 学位 M.S.
  • 年度 2011
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号