首页> 外文会议>Annual highway geology symposium >Assessing the Capabilities and Limitation of Terrestrial LiDAR, Terrestrial Photogrammetry, and Airborne LiDAR for Mapping Differential Slope Changes
【24h】

Assessing the Capabilities and Limitation of Terrestrial LiDAR, Terrestrial Photogrammetry, and Airborne LiDAR for Mapping Differential Slope Changes

机译:评估地面LiDAR,地面摄影测量法和机载LiDAR的能力和局限性以绘制差分坡度变化

获取原文

摘要

Assessing transportation corridors exposed to the hazard of rockfalls and rockslides traditionally involves mapping and measuring physical characteristic of the visible cut or natural slope face. These assessment systems rely on the ability to visually identify the source zone, and determine the possibility of it releasing material and affecting the corridor. Conducting this form of traditional rockfall hazard analysis is extremely challenging in mountainous terrain where site accessibility is often limited, visibility is obstructed or minimal, and the terrain is extremely complex. Advancements in remote sensing technology and processing capabilities have enabled engineers to obtain valuable 3-Dimensional (3D) information in mountainous terrain that directly facilitates the understanding of the physical environment. Using 3D remote sensing data collected at different points in time enables the monitoring of differential slope change processes, which can be used to track rockfall frequency and magnitude. This information can be critical in assessing a transportation corridor for risk from natural threats. Various remote sensing technologies are capable of generating data suitable for differential change analysis, including terrestrial LiDAR, terrestrial photogrammetry, and airborne LiDAR. However, the advantages and limitations of these technologies and when they should optimally be deployed is not widely published or clearly defined. Between December 2012 and December 2013 the efficacy of three remote sensing technologies: terrestrial and aerial LiDAR, and gigapixel photogrammetry, were compared for detecting natural and anthropogenic changes at a location along the CN railway, in British Columbia, Canada. The results demonstrate a high degree of interoperability between the different technologies, the ability to map topographical change with all three technologies, and the limitations/weaknesses of each technology with respect to mapping change. These results will aid decision-making with respect to implementation of remote sensing technologies to monitor changes to rock slopes transportation corridors, which would lead to better hazard assessments.
机译:传统上,评估遭受落石和滑坡危害的运输走廊涉及绘制和测量可见切面或自然斜坡面的物理特征。这些评估系统依赖于视觉识别源区域并确定其释放物质并影响走廊的可能性。在山地地形中,进行这种形式的传统落石灾害分析是极具挑战性的,那里的场地通常难以通行,能见度受阻或很小,并且地形极为复杂。遥感技术和处理能力的进步使工程师能够在山区获得有价值的3D(3D)信息,从而直接有助于对物理环境的理解。使用在不同时间点收集的3D遥感数据,可以监控不同的坡度变化过程,该过程可用于跟踪落石的频率和幅度。该信息对于评估运输通道是否存在自然威胁风险至关重要。各种遥感技术能够生成适用于差异变化分析的数据,包括地面LiDAR,地面摄影测量法和机载LiDAR。但是,这些技术的优点和局限性以及何时最佳部署它们的方法尚未广泛发布或明确定义。在2012年12月至2013年12月期间,对加拿大和加拿大不列颠哥伦比亚省CN铁路沿线某地的自然和人为变化进行了比较,比较了三种遥感技术(地面和空中LiDAR以及千兆像素摄影测​​量)的功效。结果证明了不同技术之间的高度互操作性,使用所有三种技术绘制地形变化的能力以及每种技术在绘制变化方面的局限性/弱点。这些结果将有助于就遥感技术的实施作出决策,以监测岩质斜坡运输走廊的变化,这将有助于进行更好的危害评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号