首页> 外文会议>Annual highway geology symposium >Assessing the Capabilities and Limitation of Terrestrial LiDAR, Terrestrial Photogrammetry, and Airborne LiDAR for Mapping Differential Slope Changes
【24h】

Assessing the Capabilities and Limitation of Terrestrial LiDAR, Terrestrial Photogrammetry, and Airborne LiDAR for Mapping Differential Slope Changes

机译:评估陆地激光雷达,地面摄影措施和空气传播激光器的能力和限制,用于映射差分斜率变化

获取原文

摘要

Assessing transportation corridors exposed to the hazard of rockfalls and rockslides traditionally involves mapping and measuring physical characteristic of the visible cut or natural slope face. These assessment systems rely on the ability to visually identify the source zone, and determine the possibility of it releasing material and affecting the corridor. Conducting this form of traditional rockfall hazard analysis is extremely challenging in mountainous terrain where site accessibility is often limited, visibility is obstructed or minimal, and the terrain is extremely complex. Advancements in remote sensing technology and processing capabilities have enabled engineers to obtain valuable 3-Dimensional (3D) information in mountainous terrain that directly facilitates the understanding of the physical environment. Using 3D remote sensing data collected at different points in time enables the monitoring of differential slope change processes, which can be used to track rockfall frequency and magnitude. This information can be critical in assessing a transportation corridor for risk from natural threats. Various remote sensing technologies are capable of generating data suitable for differential change analysis, including terrestrial LiDAR, terrestrial photogrammetry, and airborne LiDAR. However, the advantages and limitations of these technologies and when they should optimally be deployed is not widely published or clearly defined. Between December 2012 and December 2013 the efficacy of three remote sensing technologies: terrestrial and aerial LiDAR, and gigapixel photogrammetry, were compared for detecting natural and anthropogenic changes at a location along the CN railway, in British Columbia, Canada. The results demonstrate a high degree of interoperability between the different technologies, the ability to map topographical change with all three technologies, and the limitations/weaknesses of each technology with respect to mapping change. These results will aid decision-making with respect to implementation of remote sensing technologies to monitor changes to rock slopes transportation corridors, which would lead to better hazard assessments.
机译:评估暴露于岩石和岩石的危害的运输走廊传统上涉及可见切割或自然斜面面的映射和测量物理特性。这些评估系统依赖于直观地识别源区的能力,并确定其释放材料并影响走廊的可能性。进行这种形式的传统岩石危险分析在山地地形中非常具有挑战性,在现场可访问性通常有限的地方,可见性受阻或最小,地形非常复杂。遥感技术和处理能力的进步使得工程师能够在山区地形中获得有价值的三维(3D)信息,这些信息直接促进了对物理环境的理解。使用在不同点收集的3D遥感数据,可以监控差分斜率变化过程,该过程可用于跟踪岩石频率和幅度。这些信息对于评估自然威胁的风险风险的运输走廊至关重要。各种遥感技术能够生成适用于差异变化分析的数据,包括地面激光乐队,地面摄影测量和空中激光乐队。然而,这些技术以及当它们应最佳地部署时的优点和局限性并不广泛发布或清楚地定义。在2012年12月和2013年12月期间,三个遥感技术的疗效:陆地和空中激光器和千兆像素摄影测​​量,以检测在加拿大不列颠哥伦比亚省CN铁路沿着CN铁路的地点的自然和人为变化。结果表明了不同技术之间的高度互操作性,利用所有三种技术映射地形变化的能力,以及各技术相对于映射变化的局限/弱点。这些结果将有助于实施遥感技术的实施,以监测岩石斜坡运输走廊的变化,这将导致更好的危险评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号