首页> 外文会议> >A Novel Vortex Generator for Mitigation of Shock-Induced Separation
【24h】

A Novel Vortex Generator for Mitigation of Shock-Induced Separation

机译:一种新型的涡流发生器,用于减轻冲击引起的分离

获取原文

摘要

A new geometry of a sub-boundary-layer vortex generator, which is termed as a slotted-ramp vortex generator, is proposed here. The geometry of the vortex generator is that of a ramp (triangular wedge) which has a semi-circular groove at its base. The centerplane of the groove or slot, which is basically like a tunnel that runs across the length of the ramp, is located at the spanwise plane of symmetry of the ramp. Preliminary computations of supersonic flow at a free-stream Mach number of 2.5 are conducted over vortex generators 2 mm, 3 mm, and 4 mm high. For each device height h, the flow is simulated for three values of the slot radius - 0.2h 0.3h, and 0.4h. The incoming flow profile is based on the experiments conducted by Dr. Babinsky at Cambridge on control of shock/boundary-layer interaction with micro vortex generators at a free-stream Mach number of 2.5. An immersed-boundary technique suitable for high-speed turbulent flows is used for rendering the vortex generators. Comparisons are presented between the different slotted-ramp vortex generators with a standard ramp based vortex generator of the same device height using streamwise velocity profiles at different locations downstream of the device. Velocity plots show that the new device results in higher streamwise velocity along the centerline in the near wake region for the larger sized vortex generators and the effect improves when a higher slot radius is used. Comparisons are also presented 'with the standard ramp type vortex generator using span-averaged total pressure profiles and momentum-deficit contours at different streamwise locations, and near surface axial velocity contours. Finally, results from computations of an impinging oblique-shock/boundary-layer interaction for a flow turning angle of 7 degrees at Mach 2.5 with and without flow control are presented. To achieve flow control two different cases are considered - one using an array of 3 × 3 mm high slotted-ramp vortex generators and the other using a similar array of the ramp type vortex generator. All the computations done as part of this study solves the Reynolds-averaged Navier-Stokes equations with Menter's k - ω/k - ε turbulence model (baseline or SST formulation).
机译:在此,提出了一种新的子边界层涡旋发生器的几何结构,称为缝隙斜波涡旋发生器。涡流发生器的几何形状是在其底部具有半圆形凹槽的斜坡(三角形楔形)的几何形状。凹槽或狭槽的中心平面(基本上就像一条隧道,横穿坡道的长度)位于坡道的翼展方向对称面上。在2毫米,3毫米和4毫米高的涡流发生器上对自由流马赫数为2.5的超音速流进行了初步计算。对于每个设备高度h,将模拟三个缝隙半径的值-0.2h 0.3h和0.4h。传入的流量剖面基于剑桥大学Babinsky博士在自由流马赫数为2.5时控制与微涡流发生器的冲击/边界层相互作用的实验。适用于高速湍流的浸入边界技术用于绘制涡流发生器。使用在设备下游不同位置的流向速度分布图,对不同的缝隙斜坡涡流发生器与具有相同设备高度的基于标准斜波的涡流发生器进行了比较。速度图显示,对于较大尺寸的涡流发生器,新设备会在近尾流区域沿中心线产生更高的水流速度,并且当使用较大的缝隙半径时,效果会得到改善。使用标准斜波型涡流发生器进行比较,该涡流发生器使用跨度平均的总压力曲线和流向不同位置的动量赤字轮廓以及近地表轴向速度轮廓。最后,给出了在有和没有流量控制的情况下,当转速为2时,马赫数为2.5时,转向倾斜角/边界层相互作用的计算结果,结果为7度。为了实现流量控制,考虑了两种不同的情况-一种使用3×3 mm高开槽斜坡涡流发生器的阵列,另一种使用类似类型的斜波型涡流发生器的阵列。作为研究的一部分,所有计算都使用Menter的k-ω/ k-ε湍流模型(基线或SST公式)求解了雷诺平均Navier-Stokes方程。

著录项

  • 来源
    《》|2014年|11515-11530|共16页
  • 会议地点
  • 作者单位
  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号