首页> 外文会议>AIAA SciTech forum;Aerospace sciences meeting >Application of Jetstream to a Suite of Aerodynamic Shape Optimization Problems
【24h】

Application of Jetstream to a Suite of Aerodynamic Shape Optimization Problems

机译:Jetstream在一组气动形状优化问题中的应用

获取原文

摘要

This work demonstrates the performance of Jetstream, a high-fidelity aerodynamic shape optimization methodology for three-dimensional turbulent flows. The geometry parameterization and mesh movement is accomplished using B-spline volumes and linear elasticity mesh movement. The Euler or Reynolds-averaged Navier-Stokes (RANS) equations are solved at each iteration using a parallel Newton-Krylov-Schur method. The equations are discretized in space using summation-by-parts operators with simultaneous approximation terms to enforce boundary and block interface conditions. The gradients are evaluated using the discrete-adjoint method to allow for gradient-based optimization using a sequential quadratic programming algorithm. The goal of this work is to investigate the performance of Jetstream for three test problems. The first problem is the drag minimization of a two-dimensional symmetric airfoil in transonic inviscid flow, under a geometric constraint that the airfoil have a thickness greater than or equal to that of a NACA 0012 airfoil. Although the shock waves are not quite eliminated, they are substantially weakened, such that the drag coefficient is reduced by 86% compared to the NACA 0012 airfoil. The second problem is drag minimization through optimizing the twist distribution of a three-dimensional wing characterized by NACA 0012 sections in subsonic inviscid flow, subject to a lift constraint. A nearly elliptical spanwise lift distribution is achieved by the optimized twist distribution, leading to a span efficiency factor of 0.98. The third problem is drag minimization through optimizing the sections and twist distribution of the blunt-trailing-edge Common Research Model wing in transonic turbulent flow, subject to lift and pitching moment constraints. For this case the optimization is performed based on the solution of the RANS equations, with the Spalart-Allmaras turbulence model fully coupled and linearized. The drag coefficient is reduced by eleven counts, or 6%, when analyzed on a fairly fine mesh.
机译:这项工作演示了Jetstream的性能,这是一种用于三维湍流的高保真空气动力学形状优化方法。几何参数化和网格运动是使用B样条体积和线性弹性网格运动来完成的。使用并行的Newton-Krylov-Schur方法在每次迭代中求解Euler或Reynolds平均的Navier-Stokes(RANS)方程。这些方程式是使用逐部分求和运算符与同时的近似项在空间中离散的,以强制执行边界和块接口条件。使用离散伴随方法评估梯度,以允许使用顺序二次规划算法进行基于梯度的优化。这项工作的目的是针对三个测试问题调查Jetstream的性能。第一个问题是跨音速无粘性流中二维对称机翼的阻力最小化,这是在几何约束下,机翼的厚度大于或等于NACA 0012机翼的厚度。尽管冲击波并未完全消除,但它们已大大减弱,因此与NACA 0012机翼相比,阻力系数降低了86%。第二个问题是通过优化三维飞机机翼的扭曲分布来减小风阻,该机翼的特征在于亚音速无粘性流中的NACA 0012部分受升力约束。通过优化的扭曲分布可以实现近乎椭圆的翼展方向升力分布,从而产生0.98的翼展效率系数。第三个问题是通过优化跨音速湍流中钝尾缘通用研究模型机翼的截面和扭曲分布来使阻力最小化,该机翼受到升力和俯仰力矩的约束。对于这种情况,优化是基于RANS方程的解进行的,其中Spalart-Allmaras湍流模型已完全耦合并线性化。在相当精细的网格上进行分析时,阻力系数减少11个计数或6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号