首页> 外文会议>International Conference on Advanced Batteries, Accumulators and Fuel Cells >GarnetT-PEO Composite Solid Electrolytes: A Multiscale View on Li~+ Transport
【24h】

GarnetT-PEO Composite Solid Electrolytes: A Multiscale View on Li~+ Transport

机译:Garnett-peo复合实体电解质:Li〜+运输的多尺度视图

获取原文

摘要

The fast-expanding sector of portable electronics and electric vehicles look for new solutions to overcome safety and performance limitations of liquid electrolyte-based Li-ion batteries. A promising new technology is the so-called Li metal Solid State Battery (SSB), which aims to replace the flammable liquid electrolyte by solid electrolyte materials, such as ceramics or polymers. Ceramic electrolytes are the best candidates for SSB in terms of high Li~+ conductivity, though they are strongly limited by their interfacial mechanical stability with Li metal anode [1]. An alternative is to combine the desirable properties of ceramic and polymeric electrolytes into a composite concept. Generating knowledge about interactions between composite components and their influence on Li-ion mobility, electrochemical stability and Li electrodeposition properties is thus, essential to progress towards practical applications. In this contribution, we focus on the composite solid electrolyte system based on PEOLiTFSI polymeric matrix enriched with Li_(6.55)La3Zr2Ga_(0.15)O_(12) garnet fillers [2].To accurately investigate the Li-ion transport properties and avoid the typical segregation issues of these immiscible mixtures, we apply a new processing method that ensures a high degree of structural and chemical homogeneity, even at the local scale, and across a broad range of ceramic filler content. Solid-state NMR and Electron microscopy were used to locally characterize the structure of the composites. The local mobility of Li-ion was investigated by 2D NMR to understand and propose possible transport mechanism. The effect of garnet filler on salt dissociation, ions interactions and correlation between local and global ion nobilities were reconsidered. The impact of garnet filler content on the macroscopic Li-ion conductivity will be discussed as well as their influence on mechanical behavior and the polymer matrix stability with metallic Li anode. Finally, the implementation of these composite electrolytes in Li metal all-solid-state full cell device will be presented. All in all, in this work we show how the combination of hard-soft electrolyte materials can enhance the interfacial stability with Li metal anode upon cycling, offering new opportunities to prevent Li dendrite formation in solid-state batteries.
机译:便携式电子产品和电动汽车的快速扩张部门寻找新的解决方案,以克服液体基电解液,锂离子电池的安全性和性能限制。一个有前途的新技术是所谓的Li金属的固态电池(SSB),其目的是由固体电解质材料,如陶瓷或聚合物来代替易燃液体电解质。陶瓷电解质是SSB的最佳候选中高的Li〜+导电性方面,虽然它们强烈地受到与Li金属阳极[1]其界面的机械稳定性的限制。另一种方法是陶瓷和聚合物电解质的理想的性质组合到一个复合的概念。生成有关复合材料部件以及它们对锂离子迁移率的影响之间的相互作用的知识,电化学稳定性和李电性能因此,必须对实际应用的进展。在这方面的贡献,我们集中基于(6.55)La3Zr2Ga_(0.15)O_(12)与Li_富集PEOLiTFSI聚合物基质石榴石填料[2]。为了精确地调查锂离子传输性和避免典型的复合固体电解质系统上这些不混溶的混合物的偏析问题,我们应用,可确保高度的结构和化学均匀性,即使在局部范围,并在广泛的陶瓷填料内容的新的处理方法。固态NMR和电子显微镜被用来局部地表征了复合材料的结构。锂离子的本地移动是由二维核磁共振调查,了解,并提出可能的传输机制。石榴石填料对盐离解,离子相互作用和相关局部和全局离子王公贵族之间的效果进行重新考虑。在宏观上Li离子传导性填料的含量的石榴石的影响将要讨论的,以及它们对机械的行为和与金属Li阳极的聚合物基质稳定性的影响。最后,李金属全固态全电池装置,这些复合电解质的实施将提交。总而言之,在这个工作中,我们展示了如何的硬软电解质材料的组合可以在循环加强与李金属阳极的界面稳定性,固态电池,提供了新的机遇,以防止锂枝晶的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号