首页> 外文会议>International conference on space operations >Methods of Pulse Phase Tracking for X-ray Pulsar Based Spacecraft Navigation using Low Flux Pulsars
【24h】

Methods of Pulse Phase Tracking for X-ray Pulsar Based Spacecraft Navigation using Low Flux Pulsars

机译:基于低通量脉冲星的基于X射线脉冲星的航天器导航的脉冲相位跟踪方法

获取原文

摘要

In this paper, the method of pulse phase tracking for X-ray pulsar based spacecraft navigation is expanded to accommodate signals arriving from pulsars with lower flux than the Crab Pulsar. Spacecraft position and velocity estimates can be calculated using phase and frequency estimates of an observed pulsar signal. This allows for nearly continuous updates of vehicle motion estimates over short time frames and eliminates the need to time transfer all of the arriving photons to an inertial reference at the solar system barycenter. Previous work in pulse phase tracking uses a maximum likelihood estimator (MLE) for initial phase and a second-order digital phase-locked loop (DPLL) with a one second block size. This technique accurately tracks phase and Doppler frequency using simulated photons modeling the output of the Crab Pulsar. This method breaks down when considering pulsars that have a lower flux. The main difficulty is balancing the need to keep DPLL block sizes short with the fact that very few photons arrive in any given block of the phase tracking algorithm. Most X-ray pulsars have fluxes that are multiple orders of magnitude lower than the Crab Pulsar. Two phase tracking methods for low flux X-ray pulsars are hypothesized and tested. The first involves removing the dynamics from the signal each block using estimates of the detectors velocity and acceleration. This parabolic phase model is used to compute an MLE for initial phase. The output is fed into a third-order DPLL to give estimates for the next block. The second method uses a three parameter MLE that is derived to estimate the phase, frequency, and frequency derivative of a pulsar signal. These estimates are sent to a frequency locked-loop assisted phase locked-loop. Both methods allow for longer blocks which is essential unless the detector area or background rejection is improved. The two methods are validated and compared on their ability to track detectors undergoing constant acceleration along the line-of-sight to a pulsar and to track a portion of the Cassini cruise trajectory using PSR B1821-24 and PSR B1937+21.
机译:在本文中,扩展了用于基于X射线脉冲星的航天器导航的脉冲相位跟踪方法,以容纳来自脉冲星的通量比螃蟹脉冲星低的脉冲星发出的信号。可以使用观测到的脉冲星信号的相位和频率估算来计算航天器的位置和速度估算。这允许在短时间范围内对车辆运动估计进行近乎连续的更新,并且无需将所有到达的光子时间转移到太阳系重心处的惯性参考上。之前在脉冲相位跟踪中的工作使用最大似然估计器(MLE)进行初始相位,并使用具有一秒钟块大小的二阶数字锁相环(DPLL)。这项技术使用模拟螃蟹脉冲星输出的光子来精确跟踪相位和多普勒频率。当考虑具有较低通量的脉冲星时,此方法会失效。主要困难在于平衡保持DPLL块大小的需要与几乎没有光子到达相位跟踪算法的任何给定块的事实之间的平衡。大多数X射线脉冲星的通量要比Crab Pulsar低多个数量级。假设并测试了用于低通量X射线脉冲星的两种相位跟踪方法。第一个涉及使用检测器速度和加速度的估计从每个块的信号中删除动态特性。该抛物线相位模型用于计算初始相位的MLE。输出被馈送到三阶DPLL,以给出下一个块的估计值。第二种方法使用推导的三参数MLE来估计脉冲星信号的相位,频率和频率导数。这些估计被发送到频率锁定环辅助锁相环。两种方法都允许更长的块,这是必不可少的,除非改善了检测器面积或背景抑制。对这两种方法进行了验证,并比较了它们使用PSR B1821-24和PSR B1937 + 21跟踪沿视线向脉冲星不断加速的探测器的能力以及跟踪卡西尼号巡航轨迹的一部分的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号