首页> 外文会议>International conference on space operations >Methods of Pulse Phase Tracking for X-ray Pulsar Based Spacecraft Navigation using Low Flux Pulsars
【24h】

Methods of Pulse Phase Tracking for X-ray Pulsar Based Spacecraft Navigation using Low Flux Pulsars

机译:低通量脉冲条件基于X射线Pulsar基于航天器导航的脉冲相位跟踪方法

获取原文

摘要

In this paper, the method of pulse phase tracking for X-ray pulsar based spacecraft navigation is expanded to accommodate signals arriving from pulsars with lower flux than the Crab Pulsar. Spacecraft position and velocity estimates can be calculated using phase and frequency estimates of an observed pulsar signal. This allows for nearly continuous updates of vehicle motion estimates over short time frames and eliminates the need to time transfer all of the arriving photons to an inertial reference at the solar system barycenter. Previous work in pulse phase tracking uses a maximum likelihood estimator (MLE) for initial phase and a second-order digital phase-locked loop (DPLL) with a one second block size. This technique accurately tracks phase and Doppler frequency using simulated photons modeling the output of the Crab Pulsar. This method breaks down when considering pulsars that have a lower flux. The main difficulty is balancing the need to keep DPLL block sizes short with the fact that very few photons arrive in any given block of the phase tracking algorithm. Most X-ray pulsars have fluxes that are multiple orders of magnitude lower than the Crab Pulsar. Two phase tracking methods for low flux X-ray pulsars are hypothesized and tested. The first involves removing the dynamics from the signal each block using estimates of the detectors velocity and acceleration. This parabolic phase model is used to compute an MLE for initial phase. The output is fed into a third-order DPLL to give estimates for the next block. The second method uses a three parameter MLE that is derived to estimate the phase, frequency, and frequency derivative of a pulsar signal. These estimates are sent to a frequency locked-loop assisted phase locked-loop. Both methods allow for longer blocks which is essential unless the detector area or background rejection is improved. The two methods are validated and compared on their ability to track detectors undergoing constant acceleration along the line-of-sight to a pulsar and to track a portion of the Cassini cruise trajectory using PSR B1821-24 and PSR B1937+21.
机译:在本文中,扩展了基于X射线脉冲的航天器导航的脉冲相位跟踪方法,以容纳从脉冲脉冲到达的信号与螃蟹脉冲脉冲下的脉冲星。可以使用观察到的脉冲信号信号的相位和频率估计来计算航天器位置和速度估计。这允许在短时间帧上近几乎连续更新车辆运动估计,并且消除了将所有到达光子传递到太阳系返回的惯性参考。在脉冲相位跟踪中的先前工作使用用于初始相位的最大似然估计器(MLE)和具有一个第二块大小的二阶数字锁相环(DPLL)。这种技术可以使用模拟光子建模螃蟹脉冲的输出来精确地跟踪相位和多普勒频率。当考虑具有较低通量的脉冲条件时,该方法会分解。主要困难是平衡,需要保持DPLL块尺寸短,并且非常少的光子到达相位跟踪算法的任何给定块的事实。大多数X射线Pulsars具有比螃蟹脉冲的多个数量级的助熔剂。低通量X射线脉冲条的两相跟踪方法是假设和测试的。第一个涉及使用检测器速度和加速度的估计从信号中删除动态。该抛物期相位模型用于计算初始阶段的MLE。输出被馈送到三阶DPLL中,以给出下一个块的估计。第二种方法使用推导的三个参数MLE来估计脉冲条信号的相位,频率和频率导数。这些估计被发送到频率锁定环辅助锁相环。除非改善了检测器区域或背景抑制,否则这两种方法都允许更长的块。这两种方法被验证并比较了它们跟踪沿视线沿视线持续加速度的探测器的能力进行比较,并使用PSR B1821-24和PSR B1937 + 21跟踪一部分Cassini巡航轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号