首页> 外文会议>European Conference on Synthetic Aperture Radar >Poisson’s Summation Formula in Radar Imaging
【24h】

Poisson’s Summation Formula in Radar Imaging

机译:罗达成像中的泊松的求和公式

获取原文

摘要

Poisson’s Summation Formula (PSF) has numerous applications, not only in radar imaging. It is the bridge between continuous (infinite integrals) and discrete settings (finite sums) and, hence, links the Fourier transform, Fourier series, the Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT) to one another. Most importantly, however, is the fact that Poisson’s Summation Formula is the actual core statement hidden in any sampling theorem. In this paper, we show that two operations, discretization and periodization, are needed to come from infinite integrals to finite sums. These operations are moreover involved in any imaging process, in particular, in radar imaging. We use two operations, comb and rep, to better understand Poisson’s Summation Formula, both introduced by Woodward who is also known for introducing the sinc function and Woodward’s ambiguity function. With these operations applied to functions it can be shown that "sampling a function with 1/T" means to "periodize its Fourier transform with T" and, vice versa, "periodizing a function with T" means to "sample its Fourier transform with 1/T". This simple statement turns out to be both, the sampling theorem and Poisson’s summation formula. However, there are functions which cannot be sampled and functions which cannot be periodized. Constant functions or constantly growing functions, for example, can be sampled but cannot be periodized. Vice versa, a Dirac delta can be periodized, it yields a Dirac comb, but cannot be sampled. So, another outcome in this paper is an easy-to-apply rule for distinguishing those functions which can be sampled or periodized or sampled and periodized and those which cannot.
机译:泊松的求和公式(PSF)具有许多应用,不仅在雷达成像中。它是连续(无限积分)和离散设置(有限和)之间的桥梁,因此,将傅里叶变换,傅里叶系列,离散时间傅里叶变换(DTFT)和离散傅里叶变换(DFT)联系在一起。然而,最重要的是,泊松的总和公式是隐藏在任何抽样定理中的实际核心陈述。在本文中,我们表明,需要两种操作,离散化和周期,从无限量到有限款项。此外,这些操作还涉及任何成像过程,特别是在雷达成像中。我们使用两项操作,梳理和代表,更好地了解泊松的求和公式,两者都是由伍德沃德引入的,该配方也尚认出于引入SINC功能和伍德沃德的歧义功能。使用这些操作应用于功能,可以显示“使用1 / t”采样函数意味着“通过t”的傅立叶变换,反之亦然,“与t”的函数定期为“样本其傅立叶变换” 1 / t“。这个简单的陈述结果既是兼作的,采样定理和泊松的求和公式。但是,存在无法采样的功能,也无法进行函数。例如,可以对常量功能或不断增长的功能进行采样,但不能正常化。反之亦然,可以定期DIRAC DELTA,它产生了DIRAC梳,但不能采样。因此,本文的另一个结果是一个易于应用的规则,用于区分这些功能,可以进行采样或定期或采样和定期,并且那些不能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号