首页> 外文会议>Conference on oxide-based materials and devices >Optical characterization of laterally and vertically structured oxides and semiconductors
【24h】

Optical characterization of laterally and vertically structured oxides and semiconductors

机译:横向和垂直结构的氧化物和半导体的光学表征

获取原文

摘要

Optical techniques have been intensively developed for many decades in terms of both experimental and modeling capabilities. In spectroscopy and scatterometry material structures can be measured and modeled from the atomic (binding configurations, electronic band structure) through nanometer (nanocrystals, long range order) to micron scales (photonic structures, gratings, critical dimension measurements). Using optical techniques, atomic scale structures, morphology, crystallinity, doping and a range of other properties that can be related to the changes of the electronic band structure can most sensitively be measured for materials having interband transition energies in the optical photon energy range. This will be demonstrated by different models for the dielectric function of ZnO, a key material in optoelectronics and in numerous other fields. Using polarimetry such as spectroscopic ellipsometry, sub-nanometer precision has long been revealed for the thickness of optical quality layers. The lateral resolution of spectroscopic ellipsometry is limited (> 50 μm) by the use of incoherent light sources, but using single-wavelength imaging ellipsometry, a sub-micron lateral resolution can be reached. In case of sub-wavelength structures, the morphology (of e.g. porous or nanocrystalline materials) can be characterized using the effective medium theory. For structure sizes comparable to the wavelength, scatterometry is applied in a broad versatility of configurations from specular to angle resolved, from coherent to incoherent, from monochromatic to spectroscopic, from reflectometric to polarimetric. In this work, we also present an application of coherent Fourier scatterometry for the characterization of periodic lateral structures.
机译:在实验和建模能力方面,光学技术已被广泛开发了数十年。在光谱学和散射测量中,可以从原子(结合构型,电子能带结构)到纳米(纳米晶体,长距离有序)到微米级(光子结构,光栅,临界尺寸测量)对材料结构进行测量和建模。使用光学技术,对于具有在光子能量范围内的带间跃迁能量的材料,可以最灵敏地测量原子级结构,形态,结晶度,掺杂以及与电子能带结构的变化有关的一系列其他性质。 ZnO的介电功能的不同模型将证明这一点,ZnO是光电学和许多其他领域的关键材料。长期以来,使用偏振光谱法(例如椭圆偏振光谱法),亚纳米级精度一直被揭示为光学质量层的厚度。通过使用非相干光源,光谱椭偏仪的横向分辨率受到限制(> 50μm),但是使用单波长成像椭偏仪可以达到亚微米的横向分辨率。在亚波长结构的情况下,可以使用有效介质理论来表征(例如多孔或纳米晶体材料的)形态。对于与波长相当的结构尺寸,散射测量法可应用在从镜面反射到角度分辨,从相干到非相干,从单色到光谱,从反射到偏振的各种配置中。在这项工作中,我们还提出了相干傅里叶散射法在表征周期性侧向结构中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号