首页> 外文会议>International astronautical congress >Finite-time Continuous Sliding Mode Magneto-Coulombic Satellite Attitude Control
【24h】

Finite-time Continuous Sliding Mode Magneto-Coulombic Satellite Attitude Control

机译:有限时间连续滑模磁-库仑卫星姿态控制

获取原文

摘要

A magnetically actuated satellite cannot be magnetically shielded which causes malfunctioning of magnetic sensitive sensors and instruments on-board. The residual magnetic torque resulting from the currents in the circuitry also interferes with the magnetic control system. Further, the satellite surface charging, which may be on the order of 20 KV, due to its interaction with the charged particles and high energy photons further adds to the problem. This leads to problems related to the telemetry, spurious commands causing control malfunctioning, and damage to the satellite surface including failure of integrated circuits leading to a complete failure of the satellite. However, it is possible to overcome the aforementioned problems by channelizing the accumulated static charges which can be used effectively for the active control of a satellite by placing Coulomb shells as proposed in this paper. This also allows magnetic shielding of the satellite as no longer current carrying coils are required inside the satellite body to produce torque. A magneto-Coulombic attitude actuation system is proposed and equations of motion are developed for the same in a circular orbit. Equations for the charges required on the Coulomb shells are derived, which are used to find the available torque for actuating the satellite. Global stability of the magneto Coulombic system is proved for a modified finite-time continuous sliding mode control law. Here, the controller is designed in terms of both the errors in quaternions and the relative angular velocity. The finite-time reachability to the neighborhood of the sliding surface followed by exponential convergence of the quaternion and angular velocity, with respect to the orbital frame, is shown using Lyapunov theorem. Simulations are carried out for various initial conditions of orientation and angular velocity of the satellite to prove the efficacy of the magneto-Coulombic system for the global attitude and large angular velocity control. A comprehensive physical analysis of the system dynamics is presented, which sheds light on the working mechanism of the magneto-Coulombic system in producing the torque and controlling the angular motion and attitude.
机译:磁驱动的卫星不能被磁屏蔽,这会导致车载磁敏传感器和仪器出现故障。由电路中的电流产生的剩余磁转矩也会干扰磁控制系统。此外,由于卫星表面电荷与带电粒子和高能光子的相互作用,其表面电荷可能约为20 KV,这进一步增加了该问题。这导致与遥测相关的问题,导致控制故障的虚假命令以及对卫星表面的损坏,包括集成电路故障导致卫星完全故障。但是,可以通过对累积的静电荷进行通道化来克服上述问题,如本文所建议的那样,通过放置库仑壳体,可以有效地将其用于卫星的主动控制,从而有效地利用这些累积的静电荷。这也允许对卫星进行磁屏蔽,因为在卫星主体内部不再需要载流线圈来产生扭矩。提出了一种磁-库仑姿态致动系统,并针对其在圆形轨道上的运动方程式进行了开发。推导出了在库仑壳上所需电荷的方程式,这些方程式用于找到用于驱动卫星的可用扭矩。修正的有限时间连续滑模控制律证明了磁库仑系统的全局稳定性。在此,根据四元数中的误差和相对角速度来设计控制器。使用李雅普诺夫定理显示了相对于轨道框架的四次元数和角速度的指数收敛,到滑动表面附近的有限时间可达性,以及随后的四元数和角速度的指数收敛。针对卫星的方位和角速度的各种初始条件进行了仿真,以证明磁库仑系统对全局姿态和大角速度控制的有效性。本文对系统动力学进行了全面的物理分析,从而阐明了磁-库仑系统在产生扭矩以及控制角运动和姿态方面的工作机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号