首页> 外文会议>IEEE Annual Conference on Decision and Control >Turbulence modeling and Kalman prediction for the control of large AO systems
【24h】

Turbulence modeling and Kalman prediction for the control of large AO systems

机译:湍流建模与大AO系统控制的卡尔曼预测

获取原文

摘要

Measurements of large ground telescopes are affected by the presence of the terrestrial atmospheric turbulence: local changes of the atmospheric refraction index (e.g. due to wind and temperature variations) cause a non flat surface of the wavefront of light beams incoming on the telescope, thus degrading the quality of the observed images. Adaptive Optics (AO) systems are of fundamental importance to reduce such atmospheric influence on ground telescopes and thus to obtain high resolution observations. The goal of the AO system is that of estimating and compensating the atmospheric turbulence effect by properly commanding a set of deformable mirrors. Because of delays in the closed loop system, the Kalman filter plays an important role in ensuring an effective control performance by providing good atmosphere predictions. However, the need of periodically updating the Kalman filter gain because of changes in the atmosphere characteristics, the increase of telescopes and sensors resolutions and the high sampling rate impose quite strict restrictions to the computational load for computing the Kalman gain. Motivated by the above considerations, some strategies have been recently considered in the system theory and astronomical communities for the efficient computation of the Kalman gain for large AO systems. Specifically, this paper presents some changes to a recently proposed procedure: the proposed approach, which exploits some results in the control theory of distributed systems, computes an approximation of the optimal gain in the frequency domain exploiting the spatial homogeneity of the system. Then, the control strategy takes advantage of some information on the turbulent phase dynamic, that is estimated from the turbulence measurements. Performances of the proposed method are investigated in some simulations.
机译:大型地面望远镜的测量受到陆地大气湍流的存在的影响:大气折射指数(例如由于风和温度变化)的局部变化导致望远镜上传入的光束波前的非平坦表面,从而降低观察到的图像的质量。自适应光学(AO)系统具有根本重要性,以减少对地望远镜的这种大气影响,从而获得高分辨率观察。 AO系统的目标是通过适当地指挥一组可变形镜来估计和补偿大气湍流效果。由于闭环系统中的延迟,卡尔曼滤波器在通过提供良好的氛围预测来确保有效的控制性能方面发挥着重要作用。然而,由于大气特性的变化,因此需要定期更新卡尔曼滤波器增益,望远镜和传感器分辨率的增加和高采样率对计算卡尔曼增益的计算负荷施加了非常严格的限制。通过上述考虑的推动,最近在系统理论和天文社区中考虑了一些策略,以实现大型AO系统的Kalman获得的有效计算。具体而言,本文提出了对最近提出的程序的一些变化:利用一些结果在分布式系统的控制理论中利用一些结果,计算利用系统的空间均匀性的频域中最佳增益的近似值。然后,控制策略利用有关湍流相位动态的一些信息,其估计来自湍流测量。在一些模拟中研究了所提出的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号