首页> 外文会议>IEEE Electronic Components and Technology Conference >Investigation of a unified LTCC-based micromachining and packaging platform for high density/multifunctional microsystem integration
【24h】

Investigation of a unified LTCC-based micromachining and packaging platform for high density/multifunctional microsystem integration

机译:高密度/多功能微系统集成的统一LTCC微机械线和包装平台的研究

获取原文

摘要

3D system-in-package has recently been considered a major enabler for high density and heterogeneous microsystem integration. We hereby proposed the concept of a unified micromachining and packaging platform based on LTCC (low temperature cofired ceramic) material system and process, which is implemented by first enhancing an existing LTCC hybrid IC fabrication line and then integrating different LTCC micromachining process modules one by one. Hence, the unified process flow can be accomplished within just one single package-test house. The platform has been capable of micromachining basic 3D MEMS (micro electromechanical system) microstructures into LTCC laminates and using them as a packaging substrate for mounting IC/MEMS from other process platforms, realizing self-contained and versatile microsystems of high density. The 3D microstructures formation process consisting of green tape machining, lamination and cofiring are demonstrated. The designing, analysis and fabricated samples of various micro functional structure enabled by the platform are illustrated, including embedded cooling microchannels (capable of lowering substrate temperature by more than 50K), microaccelerometer for harsh environment, micro Pirani gauge for in-situ vacuum level monitoring and THz (tera hertz) vacuum microelectronic devices. Samples of overall packaged MEMS and IC chips with micromachined LTCC substrate are displayed, showing ultra-low leakage (< 5×10−11 Pa·m3/s) vacuum packaging capability and significantly enhanced device performance. In addition, the platform has demonstrated the potential of stacking several laminates with mounted chips into a 3D frame-like microsystem. In comparison, 3D integration purely based on Si micromachining, e.g. anodic-bonding based in-situ wafer encapsulation, may only support a very limited spectrum of devices/materials and integration density and is somehow too expensive for many MEMS research- rs.
机译:3D系统级封装最近被认为是高密度和异构微系统集成的主要推动者。在此,我们提出了一种由第一增强现有LTCC混合IC制造线实现,并且然后由一个集成不同LTCC微加工工艺模块中的一个统一的微机械加工的概念,并基于LTCC(低温共烧陶瓷)材料的系统和方法,包装平台。因此,统一的处理流程可以只是一个单一封装测试房子内完成。该平台已能够基本3D MEMS(微机电系统)的微结构微机械加工成LTCC层压材料和使用它们作为封装基板的安装IC /从其他处理平台MEMS,实现高密度的自包含的和通用的微系统。由生带加工,层压和共同烧制的三维微结构的形成过程被证实。的设计,分析和制造各种微功能结构的样本能够通过该平台中示出,包括嵌入式冷却微通道(由比50K更能够降低基板温度),微加速度用于恶劣的环境中,微皮拉尼真空计用于原位真空水平监测和太赫兹(太赫兹)真空微电子器件。显示整体封装的MEMS和IC芯片与微机械加工LTCC基板的样品,显示出极低的泄漏(<5×10 -11 帕·米 3 / s)的真空包装能力和增强显著器件性能。此外,平台已经证明堆叠若干层压板具有安装芯片成3D框状微系统的潜力。相比较而言,3D集成纯粹基于Si微机械加工,例如阳极接合基于原位晶片封装,可以仅支持的设备/材料和集成密度非常有限的频谱和以某种方式对许多MEMS的研究 - RS过于昂贵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号