首页> 外文会议>AIAA fluid dynamics conference and exhibit >The Mixing Layer Perturbed by Dielectric Barrier Discharge
【24h】

The Mixing Layer Perturbed by Dielectric Barrier Discharge

机译:介质阻挡放电对混合层的扰动

获取原文

摘要

The effects of dielectric barrier discharge (DBD) plasma actuators on a low-speed incompressible turbulent mixing layer are studied experimentally. Both alternating current (ac) and nanosecond (ns) pulse driven plasma are examined in an effort to elucidate the control mechanism for each actuator as well as the general physics governing momentum versus thermal perturbations. Boundary layer suction is employed to analyze the influence of initial conditions on each method. The efficacy of ac-DBD plasma actuators, which function through electrohydrodynamic effects, is found to be dependent on initial mixing layer conditions and frequency. Forcing waveform and amplitude also play a significant role, but are held constant here. Results qualitatively agree with previous literature employing mechanical flaps and sinusoidal waveforms showing the validity of the experiment. Ns-DBD plasma, which is believed to function via thermal effects, is found to produce a slight stabilizing effect that is accompanied by weak fluctuations of the most amplified frequency. The stabilization is unexpected and primarily dependent on the initial conditions and plasma on-time since the employed forcing frequencies behave similarly. These effects are only observed in burst mode forcing. No measureable changes are found using single pulse forcing. The ns-DBD generated pressure waves seem to have no effect on the mixing layer growth. In the context of past studies this suggests that the efficacy of ns-DBD plasma actuators, and likely thermal perturbations in general, is heavily dependent on the scale of energy deposition relative to the initial shear layer conditions. Accordingly, typical amplitude scaling arguments in flow control must be refined for energy deposition actuators.
机译:实验研究了介质阻挡放电(DBD)等离子体致动器对低速不可压缩湍流混合层的影响。为了阐明每个执行器的控制机制以及控制动量与热扰动的一般物理原理,研究了交流(ac)和纳秒(ns)脉冲驱动等离子体。边界层吸力用于分析初始条件对每种方法的影响。 ac-DBD等离子体致动器的功效是通过电液动力效应发挥作用的,其功效取决于初始混合层的条件和频率。强迫波形和振幅也起着重要作用,但在此保持恒定。结果与使用机械襟翼和正弦波形的先前文献在质量上吻合,显示了该实验的有效性。 Ns-DBD等离子体据信是通过热效应起作用的,但它会产生轻微的稳定作用,并伴随着最大放大频率的微弱波动。稳定是出乎意料的,并且主要取决于初始条件和等离子接通时间,因为所采用的强迫频率的行为类似。仅在突发模式强制中会观察到这些效果。使用单脉冲强制没有发现可测量的变化。 ns-DBD产生的压力波似乎对混合层的生长没有影响。在过去的研究中,这表明ns-DBD等离子体致动器的功效以及一般可能的热扰动在很大程度上取决于相对于初始剪切层条件的能量沉积规模。因此,必须针对能量沉积致动器完善流量控制中的典型幅度缩放参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号