首页> 外文会议>International conference on environmental systems >NuSTAR Bus Thermal Design, Test, and On-Orbit Performance
【24h】

NuSTAR Bus Thermal Design, Test, and On-Orbit Performance

机译:NuSTAR总线热设计,测试和在轨性能

获取原文

摘要

The Nuclear Spectroscopic Telescope Array (NuSTAR) observatory was successfully launched on June 13th, 2012 from a Pegasus XL launch vehicle into a low earth orbit (LEO). The NuSTAR mission is currently in the operational science phase, imaging the sky in the high energy X-ray spectrum. The spacecraft bus was designed, integrated, and tested by Orbital Sciences Corporation (Orbital). The Instrument was developed by teams from California Institute of Technology (Caltech), Jet Propulsion Laboratory (JPL), University of California - Berkeley (UCB), and other partners. This paper discusses the bus thermal control system (TCS) design, testing, and on-orbit performance. The NuSTAR TCS design was especially challenging due to the IOmeter deployable instrument mast and the spacecraft requirement to point at any target in the sky. The full sky requirement leads to the requirement that the spacecraft withstand being exposed to the thermal environments in dramatically different ways. In some attitudes all of the bus radiators are shielded from solar flux, and in others the radiators can be exposed to full sun. A detailed thermal distortion analysis, which included a sensitivity analysis to many variables, was completed on the bus and instrument structure. The NuSTAR spacecraft utilizes four star trackers, each of which has its own unique thermal control challenges due to their different locations on the spacecraft. One of the star trackers required an innovative thermal control system due to its location inside the spacecraft bus cavity, which has a radiative environment temperature higher than the star tracker operational temperature limit. System level thermal vacuum (TVAC) and thermal balance testing presented a unique challenge because NuSTAR was in the instrument stowed configuration. During TVAC testing unique non-intrusive techniques were used to simulate some component dissipations, and special procedures were developed and utilized for difficult to verify heaters. The on-orbit thermal performance of the bus TCS has been excellent. The thermal model was correlated to on-orbit data to allow better prediction of thermal performance over the entire mission. The final analysis of the NuSTAR bus shows it will meet the TCS requirements for the 2-year mission as planned.
机译:核光谱望远镜阵列(NuSTAR)天文台于2012年6月13日成功地从飞马XL运载火箭发射到近地轨道(LEO)。 NuSTAR任务目前处于运营科学阶段,以高能X射线光谱对天空进行成像。航天器总线是由轨道科学公司(Orbital)设计,集成和测试的。该仪器是由来自加利福尼亚理工学院(Caltech),喷气推进实验室(JPL),加利福尼亚大学伯克利分校(UCB)和其他合作伙伴的团队开发的。本文讨论了总线热控制系统(TCS)的设计,测试和在轨性能。由于IOmeter可部署的仪器桅杆以及航天器要求指向天空中的任何目标,因此NuSTAR TCS的设计尤其具有挑战性。满天的需求导致航天器承受的暴露方式以截然不同的方式暴露于热环境中。在某些情况下,所有的公交散热器都被遮挡住了太阳光通量,而在另一些情况下,散热器可能会暴露在阳光下。在总线和仪器结构上完成了详细的热变形分析,其中包括对许多变量的敏感性分析。 NuSTAR航天器利用四个恒星跟踪器,由于它们在航天器上的不同位置,每个跟踪器都有其自身独特的热控制挑战。其中一个星型追踪器由于位于航天器总线腔内而需要创新的热控制系统,该辐射控制环境的辐射环境温度高于星型追踪器的工作温度极限。系统级热真空(TVAC)和热平衡测试提出了一个独特的挑战,因为NuSTAR处于仪器存放状态。在TVAC测试期间,使用独特的非侵入式技术来模拟某些组件的耗散,并且开发了特殊的程序并将其用于难以验证的加热器。总线TCS的在轨热性能非常好。将热模型与在轨数据相关联,以更好地预测整个任务的热性能。对NuSTAR客车的最终分析表明,它将按计划满足2年任务的TCS要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号